Folia Microbiologica

, Volume 24, Issue 4, pp 352–363 | Cite as

Physiological characterictics and energy balance ofKlebsiella aerogenes in a multistage tower fermentor

  • J. Páca


Biomass growth, consumption of carbon and energy source, specific rates of formation of metabolic byproducts, biomass yield referred to the C-source and to oxygen, respiration rate and the value ofRQ were studied inKlebsiella aerogenes CCM 2318 (on a synthetic glucose medium) at different specific growth rates. Maintenance coefficients and the total energy balance of the cultivation process were evaluated for a multistage tower fermentor with a defined interstage mixing. The results pointed to changes in both glucose metabolism and the physiological state of the population, brought about by changes in specific growth rate. As compared with a chemostat, the culture was found to exhibit a different physiological character in stages 1 and 4 despite a considerable interstage mixing.


Specific Growth Rate Dilution Rate Oxygen Limitation Oxygen Transfer Rate Chemostat Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akiba T., Fukimbara T.: Fermentation of volatile substrate in a tower-type fermenter with a gas entrainment process.J. Ferment. Technol.51, 134 (1973).Google Scholar
  2. Bolton P. G., Rotgers P. J., Dean A. C. R.: Molar growth yields and acid phosphatase synthesis inKlebsiella aerogenes growing in carbon-limited chemostat culture.J. Appl. Chem. Biotechnol.22, 941 (1972).CrossRefGoogle Scholar
  3. Camabgo-Bubio E., Ornelas-Vale A., Cassarubias-Arcos G., Nagai S.: Energetic balance and cellular composition ofCandida utilis in sugar-limited chemostat cultures based on nopal fruit.J. Ferment. Technol.55, 56 (1977).Google Scholar
  4. Conway E. J.:Microdiffusion Analysis and Volumetric Error, 3rd Ed. Crocby Lockwood Sons, London 1950.Google Scholar
  5. Degn H., Lilleør M., Lønsmann Iversen J. J.: The occurrence of a step wise-decreasing respiration rate during oxidative assimilation of different substrates by restingKlebsiella aerogenes in a system open to oxygen.Biochem. J.136, 1097 (1973).PubMedGoogle Scholar
  6. Doelle H. W., Hollywood N., Westwood A. W.: Effect of glucose concentration on a number of enzymes involved in the aerobic and anaerobic utilization of glucose in turbidostat cultures ofEscherichia coli.Microbios9, 221 (1974).PubMedGoogle Scholar
  7. Doležal J., Kapbálek F.: Physiological characteristics of the chemostatically grownCitrobacter freundii as a function of the specific growth rate and type of nutrient limitation.Folia Microbiol.21, 168 (1976).CrossRefGoogle Scholar
  8. Falch E. A., Gaden E. L.: A continuous multistage tower fermentor. I. Design and performance tests.Biotechnol. Bioeng.11, 927 (1969).CrossRefGoogle Scholar
  9. Falch E. A., Gaden E. L.: A continuous multistage tower fermentor. II. Analysis of reactor performance.Biotechnol. Bioeng.12, 465 (1970).CrossRefGoogle Scholar
  10. Goto S., Kitai A., Ozaki A.: Continuous yeast cell production from ethanol with a multi-stage tower fermentor.J. Ferment. Technol.51, 582 (1973).Google Scholar
  11. Grégr V., Rychtera M.:Analytical Methods to Practical Exercises in Fermentation Chemistry and Technology (in Czech), Vol. III. SNTL, Prague 1966.Google Scholar
  12. Hadjipetrou L. P., Gerrits J. P., Teulings F. A. G., Stouthamer A. H.: Relation between energy production and growth ofAerobacter aerogenes.J. Gen. Microbiol.36, 139 (1964).Google Scholar
  13. Hadjipetrou L. P., Stottthamer A. H.: Energy production during nitrate respiration byAerobacter aerogenes.J. Gen. Microbiol.38, 29 (1965).PubMedGoogle Scholar
  14. Harrison D. E. F., Loveless J. E.: The effect of growth condition on respiratory activity and growth efficiency in facultative anaerobes grown in chemostat culture.J. Gen. Microbiol.68, 35 (1971a).PubMedGoogle Scholar
  15. Harrison D. E. F., Loveless J. E.: Transient responses of facultatively anaerobic bacteria growing in chemostat culture to a change from anaerobic to aerobic conditions.J. Gen. Microbiol.68, 45 (19716).PubMedGoogle Scholar
  16. Herbert D., Elsworth R., Telling R. C.: The continuous culture of bacteria: theoretical and experimental study.J. Gen. Microbiol.14, 601 (1956).PubMedGoogle Scholar
  17. Herbert D.: Continuous culture of microorganisms. Some theoretical aspects, p. 45 inContinuous Cultivation of Microorganisms. Publ. House Czech. Acad. Sci., Prague 1958.Google Scholar
  18. Hobson P. N., Summers R.: The continuous culture of aerobic bacteria.J. Gen. Microbiol.47, 53 (1967).PubMedGoogle Scholar
  19. Hollywood N., Doelle H. W.: Effect of specific growth rate and glucose concentration on growth and glucose metabolism ofEscherichia coli K-12.Microbios17, 23 (1976).PubMedGoogle Scholar
  20. Hsu K. H., Erickson L. E., Fan L. T.: Oxygen transfer to mixed cultures in tower systems.Biotechnol. Bioeng.17, 499 (1975).CrossRefGoogle Scholar
  21. Hsu K. H., Erickson L. E., Fan L. T.: Pressure drop, gas hold-up and oxygen transfer in tower systems.Biotechnol. Bioeng.19, 247 (1977).CrossRefGoogle Scholar
  22. Kitai A., Goto S., Ozaki A.: The performance of a perforate plate column as a multistage continuous fermentor. II. Flow characteristics in cocurrent air-liquid system.J. Ferment. Technol.47, 340 (1969a).Google Scholar
  23. Kitai A., Goto S., Ozaki A.: The performance of perforated plate column as a multistage continuous fermentor. III. Determination of oxygen transfer coefficient.J. Ferment. Technol.47, 348 (1969b).Google Scholar
  24. Kitai A., Tone H., Ozaki A.: Performance of a perforated plate column as a multistage continuous fermentor.Biotechnol. Bioeng.11, 911 (1969c).CrossRefGoogle Scholar
  25. Kitai A., Yamagata T.: Perforated plate column fermentor.Proc. Biochem.5, 52 (1970).Google Scholar
  26. Kitai A.,Okamoto R.,Ozaki A.: Continuous culture using a perforated plate column. Paper at 4th Internat. Ferment. Symp., Tokyo 1972.Google Scholar
  27. Knook D. L., Van Riet J., Planta R. J.: The participation of cytochtomes in the process of nitrate respiration inKlebsiella (Aerobacter) aerogenes.Biochim. Biophys. Acta292, 237 (1973).CrossRefGoogle Scholar
  28. Lehninger A. L.:Biochemistry, p. 980. Worth Publishers, New York 1975.Google Scholar
  29. Mayberry W. R., Pbochazka G. L., Payne W. J.: Factors derived from studies of aerobic growth in minimal media.J. Bacteriol.96, 1424 (1968).PubMedGoogle Scholar
  30. Mayer D. J., Jones C. W.: Reactivity with oxygen of bacterial cytochtome oxidases ai, aa3 and o.FEBS Letters33, 101 (1973a).CrossRefGoogle Scholar
  31. Mayer D. J., Jones C. W.: Oxidative phosphorylation in bacteria which contain different cytochrome oxidases.Eur. J. Biochem.36, 144 (1973b).CrossRefGoogle Scholar
  32. Morris G. G., Greenshields B. N., Smith E. L.: Aeration in tower fermenters containing microorganisms, p. 535 inAdvances in Microbial Engineering, Part 1 (B. Sikyta, A. Prokop, M. Novák, Eds). Wiley & Sons, New York 1973.Google Scholar
  33. Neidhardt F. C.: Role of enzyme repression in the regulation of catabolism in bacteria. Colloque International du Centre National de la Recherche Scientifique124, 329 (1963).Google Scholar
  34. Neidhardt F. C.: Méchanismes de régulation des activités cellulaires chez les microorganismes.Centre Natl. Reck. Sci. Symp. (Paris)124, 329 (1965).Google Scholar
  35. Nishizawa Y., Nagai S., Aiba S.: Grown yields ofRhodopseudomonas spheroides in dark and aerobic chemostat cultures.J. Ferment. Technol.52, 526 (1974).Google Scholar
  36. Páaca J.: Effect of oxygen supply on the course of batch cultivations of facultatively anaerobic bacteria.Sci. Papers Inst. Chem. Technol. (Prague)E 43, 67 (1975).Google Scholar
  37. Páca J.: Oxygen transfer rate, respiration and yields in batch and chemostat cultures ofKlebsiella aerogenes.Folia Microbiol.21, 417 (1976).CrossRefGoogle Scholar
  38. Páca J.: Effect of oxygen supply on growth ofKlebsiella aerogenes in a multistage tower fermentor.Folia Microbiol.23, 108 (1978).CrossRefGoogle Scholar
  39. Páca J., Grégr V.: Design and performance characteristics of a continuous multistage tower fermentor.Biotechnol. Bioeng.18, 1075 (1976).CrossRefGoogle Scholar
  40. Páca J., Grégr V.: Effect of viscosity on backflow coefficient and oxygen transfer rate in a multistage tower fermentor.J. Ferment. Technol.55, 166 (1977a).Google Scholar
  41. Páca J., Grégr V.: Growth characteristics ofCandida utilis on volatile substrate in a multistage tower fermentor.Biotechnol. Bioeng.19, 539 (1977b).PubMedCrossRefGoogle Scholar
  42. Páca J., Grégr V.: Growth and metabolic activity ofKlebsiella aerogenes in a chemostat culture.J. Ferment. Technol.55, 213 (1977c).Google Scholar
  43. Pannell S. D., Greenshields R. N.: A tower fermenter design for the continuous culture of filamentous fungi. Paper at Symp. FEMS, Vienna 1977.Google Scholar
  44. Payne W. J.: Energy yields and growth of heterothrophs.Ann. Rev. Microbiol.24, 17 (1970).CrossRefGoogle Scholar
  45. Pirt S. J.: The maintenance energy of bacteria in growing cultures.Proc. Roy. Soc. London, Ser.B 163. 224 (1965).CrossRefGoogle Scholar
  46. Pirt S. J.:Principles of Microbe and Cell Cultivation, p. 68. Blackwell Scientific Publications, Oxford 1975.Google Scholar
  47. Prokop A., Erickson L. E., Fernandez J., Humphrey A. E.: Design and physical characteristics of a multistage, continuous tower fermentor.Biotechnol. Bioeng.11, 945 (1969).CrossRefGoogle Scholar
  48. Stouthamer A. H., BettenhausenC.: Influence of hydrogen acceptors on growth and energy production ofProteus mirabilis.Antonie van Leeuwenhoek38, 81 (1972).PubMedCrossRefGoogle Scholar
  49. Stouthamer A. H., Bettenhausen C.: Utilization of energy for growth and maintenance in continuous and batch cultures of microorganisms.Biochim. Biophys. Acta301, 53 (1973).PubMedGoogle Scholar
  50. Stouthamer A. H.:Yields Studies in Microorganisms, p. 17. Meadowfield Press, Durham 1976.Google Scholar
  51. Todt J., Lücke J., Schügerl K., Renken A.: Gas holdup and longitudinal dispersion in different types of multiphase reactors aad their possible application for microbial processes.Chem. Eng. Sci.32, 369 (1977).CrossRefGoogle Scholar
  52. Veldkamp H.:Continuous Culture in Microbial Physiology and Ecology, p. 32. Meadowfield Press, Durham 1976.Google Scholar
  53. De Vries W., Kaptejn M. C., Van Der Beek E. G., Stouthamer A. H.: Molar growth yields and fermentation balances ofLactobacillus casei L 3 in batch cultures and in continuous cultures.J. Gen. Microbiol.63, 333 (1970).PubMedGoogle Scholar
  54. Wimpenny J. W. T., Necklen D. K.: The redox environment and microbial physiology. I. The transition from anaerobiosis to aerobiosis in continuous cultures of facultative anaerobes.Biochim. Biophys. Acta253, 352 (1971).PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 1979

Authors and Affiliations

  • J. Páca
    • 1
  1. 1.Department of Fermentation Chemistry and TechnologyInstitute of Chemical TechnologyPrague 6

Personalised recommendations