Statistical Papers

, Volume 35, Issue 1, pp 273–284 | Cite as

Partial residuals in cumulative regression models for ordinal data

  • H. Pruscha


We are concerned with cumulative regression models for an ordered categorical response variable Y. We propose two methods to build partial residuals from regression on a subset Z1 of covariates Z., which take into regard the ordinal character of the response. The first method makes use of a multivariate GLM-representation of the model and produces residual measures for diagnostic purposes. The second uses a latent continuous variable model and yields new (adjusted) ordinal data Y*. Both methods are illustrated by a data set from forestry.

Key words

Ordered categorical data generalized linear model cumulative regression model latent continuous variable model partial residuals trend removal forest damage data 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, J.A. (1984). Regression and ordered categorical variables (with discussion).Journal of the Royal Statistical Society, Series B 46, 1–30.MATHGoogle Scholar
  2. Atkinson, A.C. (1985).Plots, Transformations and Regression. University Press, Oxford.MATHGoogle Scholar
  3. Fahrmeir, L. & Kaufmann, H. (1987). Regression models for non-stationary categorical time series.Journal of Time Series Analysis 8, 147–160.CrossRefMathSciNetMATHGoogle Scholar
  4. Göttlein, A. & Pruscha, H. (1992). Ordinal time series models with application to forest damage data. In: Lecture Notes in Statistics 78, Springer, N.Y., 113–118.Google Scholar
  5. Green, P.J. (1984). Iteratively reweighted least squares for maximum likelihood estimation, and some robust and resistant alternatives (with discussion).Journal of the Royal Statistical Society, Series B 46, 149–192.MATHGoogle Scholar
  6. Landwehr, J.M., Pregibon, D. & Shoemaker, A.C. (1984). Graphical methods for assessing logistic regression models.Journal of the American Statistical Association 79, 61–71.CrossRefMATHGoogle Scholar
  7. McCullagh, P. (1980). Regression models for ordinal data (with discussion).Journal of the Royal Statistical Society, Series B 42, 109–142.MathSciNetMATHGoogle Scholar
  8. McCullagh, P. & Nelder, J.A. (1989).Generalized Linear Models. 2nd ed. Chapman and Hall, London.MATHGoogle Scholar
  9. Pierce, D.A. & Schafer, D.W. (1986). Residuals in generalized linear models.Journal of the American Statistical Association 81, 977–986.CrossRefMathSciNetMATHGoogle Scholar
  10. Pregibon, D. (1981). Logistic regression diagnostics.The Annals of Statistics 9, 705–724.CrossRefMathSciNetMATHGoogle Scholar
  11. Pruscha, H. (1993). Categorical time series with a recursive scheme and with covariates.statistics 24, 43–57.CrossRefMathSciNetMATHGoogle Scholar
  12. Tutz, G. (1990).Modelle für kategoriale Daten mit ordinalem Skalenniveau. Vandenhoeck & Ruprecht, Göttingen.MATHGoogle Scholar
  13. Wang, P.C. (1985). Adding a variable in generalized linear models.Technometrics 27, 273–276.CrossRefMathSciNetGoogle Scholar
  14. Zeger, S.L. & Qaqish, B. (1988). Markov regression models for time series: a quasi likelihood approach.Biometrika 44, 1019–1031.MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • H. Pruscha
    • 1
  1. 1.Mathematisches Institut der Unviersität MünchenMünchen

Personalised recommendations