Statistical Papers

, Volume 35, Issue 1, pp 17–26 | Cite as

Asymptotic distribution of bandwidth selectors in kernel regression estimation

  • E. Herrmann


Gasser, Kneip and Köhler (1991) proposed a fast and flexible procedure for automatic bandwidth selection in kernel regression estimation. This article describes this method and additionally derives the joint asymptotic normal distribution of this bandwidth selector with the realizationwise optimal bandwidth.


Nonparametric Regression Kernel Estimator Optimal Bandwidth Bandwidth Selection Epanechnikov Kernel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chiu, S.T. (1990) Why bandwidth selectors tend to choose smaller bandwidth and a remedy. Biometrika 71, 353–360.MathSciNetGoogle Scholar
  2. Chiu, S.T. (1991) Bandwidth selection for kernel density estimation. Ann. Statist. 19, 1883–1905.CrossRefMathSciNetMATHGoogle Scholar
  3. Chu, C.K. and Marron, J.S. (1991) Choosing a kernel regression estimator. Statist. Sci. 6, 404–436.CrossRefMathSciNetMATHGoogle Scholar
  4. Eubank, R.L. (1988) Spline Smoothing and Non-parametric Regression. Dekker, New York.Google Scholar
  5. Gasser, T. and Engel, J. (1990) The choice of weights in kernel regression estimation. Biometrika 77, 377–381.CrossRefMathSciNetMATHGoogle Scholar
  6. Gasser, T.; Kneip, A. and Köhler W. (1991) A flexible and fast method for automatic smoothing. J. Amer. Statist. Assoc. 86, 643–652.CrossRefMathSciNetMATHGoogle Scholar
  7. Gasser, T.; Müller, H.G. and Mammitzsch, V. (1985) Kernels for nonparametric curve estimation. J. Roy. Statist., Soc. Ser. B 47, 238–252.MathSciNetMATHGoogle Scholar
  8. Gasser, T.; Sroka, L. and Jennen-Steinmetz, C. (1986) Residual variance and residual pattern in nonlinear regression. Biometrika 73, 625–633.CrossRefMathSciNetMATHGoogle Scholar
  9. Härdle, W. (1990) Applied Nonparametric Regression. Cambridge University Press, Cambridge.MATHGoogle Scholar
  10. Härdle, W.; Hall, P. and Marron, J.S. (1988) How far are automatically regression smoothing parameters from their optimum? J. Amer. Statist. Assoc. 83, 86–95.CrossRefMathSciNetMATHGoogle Scholar
  11. Hall, P. and Johnstone, I. (1992) Empirical Functionals and efficient smoothing parameter selection. J. Roy. Statist. Soc. Ser. B 54, 1–35.MathSciNetGoogle Scholar
  12. Hall, P.; Kay, J.W. and Titterington, D.M. (1990) Asymptotically optimal differencebased estimation of variance in nonparametric regression Biometrika 77, 521–528.CrossRefMathSciNetGoogle Scholar
  13. Jennen-Steinmetz, C. and Gasser, T. (1988) A unifying approch to nonparametric regression estimation. J. Amer. Statist. Assoc. 83, 1084–1089.CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • E. Herrmann
    • 1
  1. 1.Fachbereich MathematikTechnische Hochschule DarmstadtDarmstadt

Personalised recommendations