Statistical Papers

, Volume 41, Issue 2, pp 159–171 | Cite as

Asymptotic estimators of the sample size in a record model



The connection between Stirling numbers of the first kind and records is well-known. Applying this relationship, we derive bounds for the maximum likelihood estimator of the sample size based on the number of observed records. The proof proceeds by a remarkable expression of the mode of the unsigned Stirling numbers of the the first kind due to Hammersley. Moreover, this representation of the mode leads to an accurate approximation of the maximum likelihood estimator.


Lower records Estimation Sample size Stirling numbers of the first kind Unimodality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Charalambides, C. A. andSingh, J. (1988). A review of the Stirling numbers, their generalizations and statistical applications.Comm. Statist. Theory Methods 17, 2533–2595.CrossRefMathSciNetMATHGoogle Scholar
  2. Dharmadhikari, S. andJoag-Dev, K. (1988).Unimodality, Convexity, and Applications. Academic Press, Boston.MATHGoogle Scholar
  3. Erdös, P. (1953). On a conjecture of Hammersley.J. London Math. Soc. 28, 232–236.CrossRefMathSciNetMATHGoogle Scholar
  4. Glick, N. (1978). Breaking records and breaking boards.Amer. Math. Monthly 85, 2–26.CrossRefMathSciNetMATHGoogle Scholar
  5. Graham, R. L., Knuth, D. E. andPatashnik, O. (1994).Concrete Mathematics. Addison Wesley, Reading, Massachussetts, 2nd ed.MATHGoogle Scholar
  6. Hammersley, J. M. (1951). The sums of products of the natural numbers.Proc. London Math. Soc. 1, 435–452.CrossRefMathSciNetMATHGoogle Scholar
  7. Hardy, G. H., Littlewood, J. E. andPólya, G. (1959).Inequalities. University Press, Cambridge, 3rd ed.Google Scholar
  8. Jordan, C. (1950).Calculus of Finite Differences. Chelsea Publishers, New York, 2nd ed.MATHGoogle Scholar
  9. Luke, Y. L. (1975).Mathematical Functions and their Approximations. Academic Press, New York.MATHGoogle Scholar
  10. Moreno-Rebollo, J. L., Barranco-Chamorro, I., López-Blásquez F. andGómez-Gómez, T. (1996). On the estimation of the unknown sample size from the number of records.Statist. Probab. Letters 31, 7–12.CrossRefMATHGoogle Scholar
  11. Nandi, S. B. andDutta, S. K. (1986). Some discrete distributions involving Stirling numbers.Sankhyā Ser. A 48, 301–314.MathSciNetMATHGoogle Scholar
  12. Rényi, A. (1962). Thèorie des èlèment saillants d’une suite d’observations. InColloquium on Combinatorial Methods in Probability Theory, 104–117, Aarhus Universitet, Denmark. Matematisk Institut.Google Scholar
  13. Rohatgi, V. K. (1976).An Introduction to Probability Theory and Mathematical Statistics. Wiley, New York.MATHGoogle Scholar
  14. Sibuya, M. (1988). Log-concavity of Stirling numbers and unimodality of Stirling distributions.Ann. Inst. Statist. Math. 40, 693–714.CrossRefMathSciNetMATHGoogle Scholar
  15. Wilf, H. S. (1994).Generatingfunctionology. Academic Press, Boston, 2nd ed.MATHGoogle Scholar

Copyright information

© Springer-Verlag 2000

Authors and Affiliations

  1. 1.Institut für MathematikUniversität OldenburgOldenburgGermany

Personalised recommendations