Release and binding of epidermal growth factor in the pancreas of rats

  • Jolanta Jaworek
  • Stanislaw J. Konturek
  • Wladystaw Bielanski
  • Jan Bilskiy
  • Mariusz Hladij


Previous studies showed that EGF is produced by salivary and duodenal glands and released in saliva and duodenal secretion. Using specific radioimmunoassay of EGF, this study showed that the salivary glands and duodenal mucosa contain high levels of EGF, reaching, respectively, about 38 and 4 μg/g of tissue weight. EGF immunoreactivity was also found in high amounts in the pancreatic tissue (20 μg/g) and the pancreatic juice (32 ng/mL), where the content of EGF was found to increase in response to feeding, cholecystokinin, or bombesin and to decrease after the administration of atropine and somatostatin. Studies on the binding of EGF revealed that pancreatic acinar membranes possess the specific and saturable EGF receptors with a high affinity sites with Kd of about 4.3 nM and binding capacity of about 62 fmol/mg of protein, and with low affinity sites with Kd of 21 nM and binding capacity of about 180 fmol/mg of protein. The observed high content of immunoreactive EGF in the pancreatic tissue and the presence of high and low affinity binding sites for EGF in the pancreatic acinar membranes, as well as the high EGF output in the pancreatic juice and its alterations in response to hormonal and postprandial stimulation, suggest an important role of EGF in pancreatic physiology.

Key Words

Regulatory peptide receptors secretion pancreas amylase 


  1. 1.
    Carpenter G, Cohen S. Epidermal growth factor.Ann. Rev. Biochem. 1979; 48: 193–216.PubMedCrossRefGoogle Scholar
  2. 2.
    Dembinski A, Gregory H, Konrurek SJ, Polanski M. Trophic action of epidermal growth factor on the pancreas and gastroduodenal mucosa in rats.J. Physiol. 1982; 325: 35–42.PubMedGoogle Scholar
  3. 3.
    Elder JB, Williams G, Lacey E. Cellular localization of human urogastrone/epidermal growth factor.Nature 1978; 271: 466,467.PubMedCrossRefGoogle Scholar
  4. 4.
    Gregory H. Isolation and structure of urogastrone and the relationship to epidermal growth factor.Nature 175; 257: 325-327.Google Scholar
  5. 5.
    Konturek SJ, Cieszkowski M, Jaworek J, Konturek JW, Brzozowski T, Gregory H. Effects of epidermal growth factor on gastrointestinal secretions.Am. J. Physiol. 184; 246: G580-G586.Google Scholar
  6. 6.
    Logsdon CD. Regulation of pancreatic acinar cell growth effects of cholecystokinin, EGF and insulin in vitro.Am. J. Physiol. 1986; 251: G487-G490.PubMedGoogle Scholar
  7. 7.
    Hirata Y, Orth DN. Epidermal growth factor (urogastrone) in human tissues.C. Clin. Endocrinol. Metab. 1979; 51: 667–672.Google Scholar
  8. 8.
    Konturek SJ. Role of epidermal growth factor in gastroprotective and ulcer healing.Scand. J. Gastroenterol. 1988; 33: 129–133.CrossRefGoogle Scholar
  9. 9.
    Konturek SJ, Brzozowski T, Piastucki I, Dembinska-Kiec A. Gastric cytoprotection by epidermal growth factor. Role of endogenous prostaglandins and DNA synthesis.Gastroenterology 1981; 81: 438–443.PubMedGoogle Scholar
  10. 10.
    Olsen PS, Poulsen PP, Kirkegaard K. Adrenergic effects on secretion of epidermal growth factor from Brunner’s glands.Gut 1985; 26: 920–927.PubMedCrossRefGoogle Scholar
  11. 11.
    Olsen PS, Poulsen SS, Kirkegaard P. Role of submandibular saliva and epidermal growth factor in gastric cytoprotection.Gastroenterology 1984; 87: 103–108.PubMedGoogle Scholar
  12. 12.
    Kirkegaard P, Olsen SS, Nexo P. Effect of vasoactive intestinal polypeptide and somatostatin on secretion of epidermal growth factor and bicarbonate secretion from Brunner’s glands.Gut 1984; 25: 1225–1229.PubMedCrossRefGoogle Scholar
  13. 13.
    Olsen PS, Kirkegaard P, Poulsen SS. Adrenergic effects on exocrine secretion of rat submandibular epidermal growth factor.Gut 1984; 25: 1234–1240.PubMedCrossRefGoogle Scholar
  14. 14.
    Olsen PS, Kirkegaard P, Poulssen SS. Vasoactive intestinal polypeptipe and acetylcholine stimulate exocrine secretion of epidermal growth factor from the rat submandibular gland.Regul. Peptides 1986; 15: 37–46.CrossRefGoogle Scholar
  15. 15.
    Logsdon SD, Williams JA. Epidermal growth factor binding and biological effects on mouse pancreatic acini.Gastroenterology 1983; 85: 339–345.PubMedGoogle Scholar
  16. 16.
    Hirata Y, Uchibashi M, Nakajima M. Immunoreactive human epidermal growth factor in human pancreatic juice.J. Clin. Endocrinol. Metab. 1982; 54: 1242–1245.PubMedCrossRefGoogle Scholar
  17. 17.
    Yip TT, Tarn YY, Keung WM. Studies on shrew (suncus murinus) epidermal growth factor.Acta Endocrinol. 1986; 111: 424–432.PubMedGoogle Scholar
  18. 18.
    Knuthsen S, Esteve JP, Bernadet B. Molecular characterization of the solubilized receptor of somatostatin from rat pancreatic acinar membranes.Biochem. J. 1988; 254: 641–647.Google Scholar
  19. 19.
    Green GM, Lyman LR. Feedback regulation of pancreatic enzyme secretion as a mechanism for trypsin inhibitorinduced hypersecretion in rats.Proc. Soc. Exp. Biol. Med. 1972; 140: 6–12.PubMedGoogle Scholar
  20. 20.
    Ihse I, Lilja P, Lundquist I. Trypsin as a regulator of pancreatic secretion in the rat.Scand. J. Gastroenterol 1974; 9: 679–683.Google Scholar
  21. 21.
    Nunson PJ, Rodbard D. LIGAND—characterisation of binding systems: a versatile, computerised approach.Anal Biochem. 1980; 107: 220–229.CrossRefGoogle Scholar
  22. 22.
    Weiland GA, Molinoff PB. Quantitative analysis of drugreceptor interactions. I. Determination of inetic and equilibrium properties.Life Sci. 1981; 29: 313–330.PubMedCrossRefGoogle Scholar
  23. 23.
    Molinoff PB, Wolfe BB, Weiland GA. Quantitative analysis of drug-receptor interactions. II. Determination of the properties of receptor subtypes.Life Sci. 1981; 29: 427–443.PubMedCrossRefGoogle Scholar
  24. 24.
    Gennella PA, Siminoski K, Murphy RA. Transepithelial transport of epidermal growth factor by absorptive cells of suckling rat ileum.J. Clin. Invest. 1987; 80: 22–32.CrossRefGoogle Scholar
  25. 25.
    Menard D, Arsenault P, Pothier P. Biological effects of epidermal growth factor in human fetal jejunum.Gastroenterology 1988; 94: 656–663.PubMedGoogle Scholar
  26. 26.
    O’Loughlin EV, Chung M, Hollenberg H. Effects of epidermal growth factor on ontogeny of the gastrointestinal tract.Am. J. Physiol 1985; 249: G674-G678.PubMedGoogle Scholar
  27. 27.
    Thornberg W, Matrisian L, Magun B. Gastrointestinal absorption of epidermal growth factor in suckling rats.Am. J. Physiol 1984; 246: G80-G85.Google Scholar
  28. 28.
    Ulshen MH, Lyn-Cook LE, Roasch RH. Effects of intraluminal epidermal growth factor on mucosal proliferation in the small intestine of adult rats.Gastroenterology 1986; 91: 1134–1140.PubMedGoogle Scholar
  29. 29.
    Konturek JW, Bielanski W, Konturek SJ. Distribution and release of epidermal growth factor in man.Gut 1989; 30: 1194–1200.PubMedCrossRefGoogle Scholar
  30. 30.
    Schaudies RP, Grimes J, Davis D. EGF content in the gastrointestinal tract of rats: effect of age and fasting/ feeding.Am. J. Physiol. 1989; 256: G856-G861.PubMedGoogle Scholar
  31. 31.
    Chabot J-G, Walker P, Pelletier G. Demonstration of epidermal growth factor binding sites in the adult rat pancreas by light microscopic autoradiography.Pancreas 1988; 6: 653–657.Google Scholar
  32. 32.
    Korc M, Matrisian LM. Binding of epidermal growth factor in rat pancreatic acini.Block. Bioph. Res. Comm. 1983; 111: 1066–1073.CrossRefGoogle Scholar
  33. 33.
    Gill NG, Bertics PJ, Santon JB. Epidermal growth factor and its receptor.Mol Cell Endocrinol. 1987; 51: 169–186.PubMedCrossRefGoogle Scholar
  34. 34.
    Kuppuswamy D, Pike LJ. Ligand-induced desensitization of 1251-epidermal growth factor internalization.J. Biol. Chem. 1989; 264: 3357–3363.Google Scholar
  35. 35.
    Brockenbrough JS, Weir GC, Korc M. Alterations in EGF binding to acini during pancreatic regeneration in the rat.Int. J. Pancreatol 1988; 3: 415–424.PubMedGoogle Scholar
  36. 36.
    Korc M, Matrisian LM, Nakamura R, Magun BE. Epidermal growth binding is altered in pancreatic acini from diabetic rats.Life Sci. 1984; 35: 2049–2056.PubMedCrossRefGoogle Scholar
  37. 37.
    St. Hilaire RJ, Hradek GT, Jones AL. Hepatic sequestration and biliary excretion of epidermal growth factor; evidence for a high capacity uptake system.Proc. Natl. Acad. Sci. USA 1983; 80: 3797–3801.CrossRefGoogle Scholar
  38. 38.
    Olsen PS, Poulsen SS, Therkelsen K. Effect of sialoadenectomy and synthetic human urogastrone on healing of chronic gastric ulcers in rats.Gut 1986; 27: 1443–1449.PubMedCrossRefGoogle Scholar
  39. 39.
    Brannon PM, Hirschi K, Korc M. Effects of epidermal growth factor, insulin and insulin-like growth factor I on rat pancreatic acinar cell cultured in serum-free medium.Pancreas 1988; 3: 41–49.PubMedCrossRefGoogle Scholar
  40. 40.
    Korc M, Finman JE. Attenuated processing of epidermal growth factor in the face of marked degradation of transforming growth factor-alfa.J. Biol. Chem. 1989; 264: 14990–14999.PubMedGoogle Scholar
  41. 41.
    Logsdon C, Williams JA. Epidermal growth factor: intracellular Ca2+ inhibits its association with pancreatic acini and A431 cells.FEBS Lett. 1983; 164: 335–339.PubMedCrossRefGoogle Scholar
  42. 42.
    Jaworek J, Konturek SJ. Distribution and release of epidermal growth factor in the pancreas.Int. J. Pancreatol. 1991; 6: 1S9–205.Google Scholar
  43. 43.
    Morisset J, Larose L, Korc M. Epidermal growth factor inhibits rat pancreatic cell proliferation, causes acinar cell hypertrophy, and prevents caerulein-induced desensitisation of amnylase release.Endocrinology 1989; 124: 2693–2698.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 1992

Authors and Affiliations

  • Jolanta Jaworek
    • 1
  • Stanislaw J. Konturek
    • 1
  • Wladystaw Bielanski
    • 1
  • Jan Bilskiy
    • 1
  • Mariusz Hladij
    • 1
  1. 1.Institute of PhysiologyAcademy of MedicineKrakowPoland

Personalised recommendations