Folia Microbiologica

, 33:170 | Cite as

Membrane fluidity inBacillus subtilis. Validity of homeoviscous adaptation

  • J. Svobodová
  • J. Julák
  • J. Pilař
  • P. Svoboda


The validity of the principle of homeoviscous adaptation forBacillus subtilis was tested by comparing fluorescence aniaotropy (1,6-diphenyl-1,3,5-hexatriene) and electron-spin resonance (16-doxylstearate) measurements carried out in isolated plasma membranes and in phospholipid fractions. The physical measurements were supplemented by fatty-acid analysis. The results support our previous findings on intact cells. The thermoadaptive mechanism ofB. subtilis manifested as an increase in relative proportion of branchedanteiso-C15 andanteiso-C17 fatty acids, are not strong enough to compensate for the marked physical change of membrane fluidity induced by temperature decrease.


Bacillus Subtilis Membrane Fluidity Phosphatidic Acid Fluorescence Anisotropy Phospholipid Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bishop D.G., Rutberg L., Samuelson B.: The chemical composition of the cytoplasmic membrane ofBacillus subtilis.Eur. J. Biochem. 2, 448–453 (1967).PubMedCrossRefGoogle Scholar
  2. Bohin J. P., Bohin A., Schaeffer P.: Increased nitrate reductase activity as a sign of membrane alternation in early blocked asporogenous mutants ofBacillus subtilis.Biochemie 58, 99–108 (1976).CrossRefGoogle Scholar
  3. Cossins A.R., Sinenski M.: Adaptation of membranes to temperature, pressure and exogenous lipids, p. 1–20 inPhysiology of Membrane Fluidity, Vol. II (M.Shnitzki, ed.). CRC Press, Boca Raton (Florida) 1984.Google Scholar
  4. Glass R.L.: Alcoholysis saponification and the preparation of fatty acids methylesters.Lipids 6, 919–926 (1971).CrossRefGoogle Scholar
  5. Kaback H.R.: Bacterial membranes, p. 99–107 inMethods in Enzymology, Vol. 22. Academic Press, New York 1971.Google Scholar
  6. Kaneda T.: Positional distribution of fatty acids in phospholipids fromBacillus subtilis.Biochim. Biophys. Acta 270, 32–39 (1972).PubMedGoogle Scholar
  7. Lindgren V., Holmgren E., Rutberg L.:Bacillus subtilis mutant with temperature-sensitive net synthesis of phosphatidylethanolamine.J. Bacteriol. 132, 473–484 (1977).PubMedGoogle Scholar
  8. Quint J.F., Fulco A.J.: The biosynthesis of unsaturated fatty acids by bacilli.J. Biol. Chem. 248, 6885–6895 (1973).PubMedGoogle Scholar
  9. Radin N.S.: Extraction of tissue lipids with a solvent of low toxicity, p. 5–7 inMethods in Enzymology, Vol. 72. Academic Press, New York 1981.Google Scholar
  10. Rottem S., Markowitz O., Razin S.: Thermal regulation of the fatty acid composition of lipopolysaccharides and phospholipidsof Proteus mirabilis.Eur. J. Biochem. 85, 451–456 (1978).PubMedCrossRefGoogle Scholar
  11. Seelig J.:Spin Labelling, Theory and Applications (L.J. Berliner, ed.), p. 373. Academic Press, New York 1976.Google Scholar
  12. Silvius J.R., Mak N., McElhaney R.N.: Why do prokarytes regulate membrane fluidity?, p. 213 inMembrane Fluidity: Biophysical Techniques and Cellular Regulations (M.Kates, A.A.Kuksis, eds.). Humana Press Clifton, New York 1980.Google Scholar
  13. Sinensky M.: Homeoviscous adaptation — a homeostatic process that regulates the viscosity of membrane lipids inEscherichia coli.Proc. Nat. Acad. Sci. USA 71, 522–525 (1974).PubMedCrossRefGoogle Scholar
  14. Svobodová J., Svoboda P.: Cytoplasmic membrane fluidity measurements on intact living cells ofBacillus subtilis by fluorescence anisotropy of 1,6-diphenyl-1,3,5-hoxatriene.Folia Microbiol. 33, 1–9 (1988a).Google Scholar
  15. Svobodová J., Svoboda P.: Membrane fluidity inBacillus subtilis. Physical change and biological adaptation.Folia Microbiol. 33, 161–169 (1986).CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 1988

Authors and Affiliations

  • J. Svobodová
    • 1
  • J. Julák
    • 2
  • J. Pilař
    • 3
  • P. Svoboda
    • 4
  1. 1.Department of Microbiology, Faculty of ScienceCharles UniversityPrague 2
  2. 2.Laboratory of Clinical Microbiology and Immunology, Faculty of MedicineCharles UniversityPrague 2
  3. 3.Institute of Macromolecular ChemistryCzechoslovak Academy of SciencesPrague 6
  4. 4.Institute of PhysiologyCzechoslovak Academy of SciencesPrague 4

Personalised recommendations