Category and products

  • John Harper


Homotopy Group Mapping Cone Whitehead Product Pushout Diagram Contracting Homotopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    I. Berstein andP.J. Hilton,On suspensions and comultiplications, Topology2 (1963) 73–82.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    T. Ganea,Some problems on numerical homotopy invariants, Lecture Notes in Math.249 (1971) 23–30.CrossRefMathSciNetGoogle Scholar
  3. [3]
    T. Ganea,Cogroups and suspensions, Invent. Math.9 (1970) 185–197.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    J.R. Harper,Co-H-maps to spheres, Israel J. Math.66 (1989) 223–237.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    N. Iwase,Genea’s conjecture on Lusternik-Schnirelmann category, Bull. London Math. Soc.30 (1998) 623–634.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    L. Lusternik andL. Schnirelmann,Méthodes Topologiques dan les Problémes Variationnels Actualités Scientifiques et Industrielles188 Paris Hermann et Cie (1934).Google Scholar
  7. [7]
    J.C. Moore,The double suspension and p-primary components of the homotopy groups of spheres, Bol. Soc. Mat. Mexicana2 (1956) 28–37.Google Scholar
  8. [8]
    N.E. Steenrod,Milgram’s classifying space of a topological group, Topology7 (1968) 349–368.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    G. W. Whitehead,Elements of Homotopy Theory, Graduate Texts in Math., Springer-Verlag (1978).Google Scholar

Copyright information

© Birkhäuser-Verlag 1998

Authors and Affiliations

  • John Harper
    • 1
  1. 1.Department of MathematicsUniversity of RochesterRochesterUSA

Personalised recommendations