Category and products

  • John Harper


Homotopy Group Mapping Cone Whitehead Product Pushout Diagram Contracting Homotopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    I. Berstein andP.J. Hilton,On suspensions and comultiplications, Topology2 (1963) 73–82.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    T. Ganea,Some problems on numerical homotopy invariants, Lecture Notes in Math.249 (1971) 23–30.CrossRefMathSciNetGoogle Scholar
  3. [3]
    T. Ganea,Cogroups and suspensions, Invent. Math.9 (1970) 185–197.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    J.R. Harper,Co-H-maps to spheres, Israel J. Math.66 (1989) 223–237.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    N. Iwase,Genea’s conjecture on Lusternik-Schnirelmann category, Bull. London Math. Soc.30 (1998) 623–634.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    L. Lusternik andL. Schnirelmann,Méthodes Topologiques dan les Problémes Variationnels Actualités Scientifiques et Industrielles188 Paris Hermann et Cie (1934).Google Scholar
  7. [7]
    J.C. Moore,The double suspension and p-primary components of the homotopy groups of spheres, Bol. Soc. Mat. Mexicana2 (1956) 28–37.Google Scholar
  8. [8]
    N.E. Steenrod,Milgram’s classifying space of a topological group, Topology7 (1968) 349–368.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    G. W. Whitehead,Elements of Homotopy Theory, Graduate Texts in Math., Springer-Verlag (1978).Google Scholar

Copyright information

© Birkhäuser-Verlag 1998

Authors and Affiliations

  • John Harper
    • 1
  1. 1.Department of MathematicsUniversity of RochesterRochesterUSA

Personalised recommendations