# Functional equations with a restricted domain

• Roman Ger
Conferenze

## Summary

This is a survey of some results on Cauchy type functional equations whose domain of validity is supposed to be restricted in various ways. The behaviour of solutions is discussed, certain methods of solving such functional equations are presented jointly with a number of examples. Applications to the classical functional equation theory are given.

## Keywords

Functional Equation Additive Function Finite Union Aequationes Math Restricted Domain
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## Sunto

Questo articolo è una rassegna di alcuni risultati riguardanti equazioni funzionali del tipo di Cauchy nelle quali le variabili sono soggette a vari tipi di restrizione. In esso viene discusso il comportamento delle soluzioni e vengono presentati, insieme ad un certo numero di esempi, alcuni metodi di soluzione di tali equazioni; da ultimo sono illustrate delle applicazioni alla teoria delle equazioni funzionali.

## Preview

Unable to display preview. Download preview PDF.

## References

1. [1]
Aczél J.,Problem (P 141). Aequationes Math. 12 (1975), p. 303.Google Scholar
2. [2]
Aczél J. andErdös P.,The non-existence of a Hamel-basis and the general solution of Cauchy’s functional equation for non-negative numbers. Publ. Math. Debrecen 12 (1965), pp. 259–265.
3. [3]
De Bruijn N. G.,On almost additive functions. Colloquium Math. 15 (1966), pp. 59–63.
4. [4]
Daróczy Z. andLosonczi L.,Über die Erweiterung der auf einer Punktmenge additiven Funktionen. Publ. Math. Debrecen 14 (1967), pp. 239–245.
5. [5]
Dhombres J. andGer R.,Conditional Cauchy equations. Glasnik Mat. (Zagreb) 13 (1978), pp. 39–62.
6. [6]
Dubikajtis L., Ferens C., Ger R. andKuczma M.,On Mikusiński’s functional equation. Ann. Polon. Math. 28 (1973), pp. 39–47.
7. [7]
Erdös P.,P 130. Colloquium Math. 7 (1960), p. 311.Google Scholar
8. [8]
Etigson L.,Characterization of trigonometric and similar functions by functional equations and inequalities (Ph. D. thesis). University of Waterloo, Waterloo, Ontario (Canada).Google Scholar
9. [9]
Ger R.,On some functional equations with a restricted domain, Fundamenta Math. 89 (1975), pp. 131–149.
10. [10]
Ger R.,On some functional equations with a restricted domain, II Fundamenta Math. 98 (1978), pp. 249–272.
11. [11]
Ger R.,On a method of solving of conditional Cauchy equations. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. Nr. 544–576 (1976), pp. 159–165.
12. [12]
Ger R.,On an alternative functional equation. Aequationes Math. 15 (1977), pp. 145–162.
13. [13]
Ger R.,Note on almost additive functions. Aequationes Math. 17 (1978), pp. 73–76.
14. [14]
Ger R.,Almost additive functions on semigroups and a functional equation. Publ. Math. Debrecen (submitted to the Editorial Board).Google Scholar
15. [15]
Ger R. andKuczma M.,On inverse additive functions. Boll. Un. Mat. Ital. (4) 11 (1975), pp. 490–495.
16. [16]
Hosszú M.,Egy alternativ függvényegyenletröl. Mat. Lapok 14 (1963), pp. 98–102.
17. [17]
Jurkat W. B.,On Cauchy’s functional equation. Proc. Amer. Math. Soc. 16 (1965), pp. 683–686.
18. [18]
Kannappan Pl. andKuczma M.,On a functional equation related to the Cauchy equation. Ann. Polon. Math. 30 (1974), pp. 49–55.
19. [19]
Kuczma M.,On some alternative functional equations. Aequationes Math. (to appear).Google Scholar
20. [20]
Kuczma M.,Functional equations on restricted domains. Aequationes Math. (to appear).Google Scholar
21. [21]
Kuratowski K. andMostowski A.,Set theory. Warszawa-Amsterdam-New York-Oxford 1976.Google Scholar
22. [22]
Światak H.,On the functional equation f(x+y) 2=(f(x)+f(y))2. Publ. Techn. Univ. Miskolc 30 (1969), pp. 307–308.Google Scholar
23. [23]
Światak H. andHosszú M.,Remarks on the functional equation e(x, y) f(xy)=f(x)+f(y). Publ. Techn. Univ. Miskolc 30 (1970), pp. 323–325.Google Scholar