Functional equations with a restricted domain

  • Roman Ger


This is a survey of some results on Cauchy type functional equations whose domain of validity is supposed to be restricted in various ways. The behaviour of solutions is discussed, certain methods of solving such functional equations are presented jointly with a number of examples. Applications to the classical functional equation theory are given.


Functional Equation Additive Function Finite Union Aequationes Math Restricted Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Questo articolo è una rassegna di alcuni risultati riguardanti equazioni funzionali del tipo di Cauchy nelle quali le variabili sono soggette a vari tipi di restrizione. In esso viene discusso il comportamento delle soluzioni e vengono presentati, insieme ad un certo numero di esempi, alcuni metodi di soluzione di tali equazioni; da ultimo sono illustrate delle applicazioni alla teoria delle equazioni funzionali.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aczél J.,Problem (P 141). Aequationes Math. 12 (1975), p. 303.Google Scholar
  2. [2]
    Aczél J. andErdös P.,The non-existence of a Hamel-basis and the general solution of Cauchy’s functional equation for non-negative numbers. Publ. Math. Debrecen 12 (1965), pp. 259–265.MathSciNetMATHGoogle Scholar
  3. [3]
    De Bruijn N. G.,On almost additive functions. Colloquium Math. 15 (1966), pp. 59–63.MATHGoogle Scholar
  4. [4]
    Daróczy Z. andLosonczi L.,Über die Erweiterung der auf einer Punktmenge additiven Funktionen. Publ. Math. Debrecen 14 (1967), pp. 239–245.MathSciNetMATHGoogle Scholar
  5. [5]
    Dhombres J. andGer R.,Conditional Cauchy equations. Glasnik Mat. (Zagreb) 13 (1978), pp. 39–62.MathSciNetGoogle Scholar
  6. [6]
    Dubikajtis L., Ferens C., Ger R. andKuczma M.,On Mikusiński’s functional equation. Ann. Polon. Math. 28 (1973), pp. 39–47.MathSciNetMATHGoogle Scholar
  7. [7]
    Erdös P.,P 130. Colloquium Math. 7 (1960), p. 311.Google Scholar
  8. [8]
    Etigson L.,Characterization of trigonometric and similar functions by functional equations and inequalities (Ph. D. thesis). University of Waterloo, Waterloo, Ontario (Canada).Google Scholar
  9. [9]
    Ger R.,On some functional equations with a restricted domain, Fundamenta Math. 89 (1975), pp. 131–149.MathSciNetMATHGoogle Scholar
  10. [10]
    Ger R.,On some functional equations with a restricted domain, II Fundamenta Math. 98 (1978), pp. 249–272.MathSciNetMATHGoogle Scholar
  11. [11]
    Ger R.,On a method of solving of conditional Cauchy equations. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. Nr. 544–576 (1976), pp. 159–165.MathSciNetGoogle Scholar
  12. [12]
    Ger R.,On an alternative functional equation. Aequationes Math. 15 (1977), pp. 145–162.CrossRefMathSciNetMATHGoogle Scholar
  13. [13]
    Ger R.,Note on almost additive functions. Aequationes Math. 17 (1978), pp. 73–76.CrossRefMathSciNetMATHGoogle Scholar
  14. [14]
    Ger R.,Almost additive functions on semigroups and a functional equation. Publ. Math. Debrecen (submitted to the Editorial Board).Google Scholar
  15. [15]
    Ger R. andKuczma M.,On inverse additive functions. Boll. Un. Mat. Ital. (4) 11 (1975), pp. 490–495.MathSciNetMATHGoogle Scholar
  16. [16]
    Hosszú M.,Egy alternativ függvényegyenletröl. Mat. Lapok 14 (1963), pp. 98–102.MathSciNetGoogle Scholar
  17. [17]
    Jurkat W. B.,On Cauchy’s functional equation. Proc. Amer. Math. Soc. 16 (1965), pp. 683–686.CrossRefMathSciNetMATHGoogle Scholar
  18. [18]
    Kannappan Pl. andKuczma M.,On a functional equation related to the Cauchy equation. Ann. Polon. Math. 30 (1974), pp. 49–55.MathSciNetMATHGoogle Scholar
  19. [19]
    Kuczma M.,On some alternative functional equations. Aequationes Math. (to appear).Google Scholar
  20. [20]
    Kuczma M.,Functional equations on restricted domains. Aequationes Math. (to appear).Google Scholar
  21. [21]
    Kuratowski K. andMostowski A.,Set theory. Warszawa-Amsterdam-New York-Oxford 1976.Google Scholar
  22. [22]
    Światak H.,On the functional equation f(x+y) 2=(f(x)+f(y))2. Publ. Techn. Univ. Miskolc 30 (1969), pp. 307–308.Google Scholar
  23. [23]
    Światak H. andHosszú M.,Remarks on the functional equation e(x, y) f(xy)=f(x)+f(y). Publ. Techn. Univ. Miskolc 30 (1970), pp. 323–325.Google Scholar

Copyright information

© Birkhäuser-Verlag 1977

Authors and Affiliations

  • Roman Ger
    • 1
  1. 1.Silesian University KatowicePolonia

Personalised recommendations