Statistical Papers

, Volume 41, Issue 1, pp 65–84 | Cite as

Sequential testing procedures for a class of distributions representing various life-testing models

  • Ajit Chaturvedi
  • Ajay Kumar
  • K. Surinder


A class of probability density functions is considered, which covers several life-testing models as specific cases. Sequential probability ratio tests are developed for testing simple and composite hypotheses regarding the parameters of the probabilistic model. Expressions for the operating characteristic and the average sample number functions are derived and their behaviour is studied by means of graph-plotting.

Key words

Class of distributions sequential testing operating characteristic and average sample number functions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bain, L. J. and Engelhardt, M. (1991): Statistical Analysis of Reliability and Life-Testing Models. Marcel Dekker, Inc., New York.MATHGoogle Scholar
  2. [2]
    Chaturvedi, A. and Rani, U. (1997): Estimation procedures for a family of density functions representing various life-testing models.Metrika, 46(3). 213–219.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Davis, D. J. (1952): The analysis of some failure data.Jour. Amer. Statist. Assoc., 47, 113–150.CrossRefGoogle Scholar
  4. [4]
    Epstein, B. and Sobel, M. (1955): Sequential life tests in the exponential case.Ann. Math. Statist., 26, 82–93.CrossRefMathSciNetGoogle Scholar
  5. [5]
    Gradshteyn, I. S. and Ryzhik, I. M. (1980): Tables of Integrals, Series and Products. Academic Press, London.Google Scholar
  6. [6]
    Johnson, N. L. (1966): Cumulative sum control charts and the Weibull distribution.Technometrics, 8, 481–491.CrossRefMathSciNetGoogle Scholar
  7. [7]
    Johnson, N. L. and Kotz, S. (1970): Continuous Univariate Distributions-I. John Wiley and Sons, New York.Google Scholar
  8. [8]
    Patel, J. K., Kapadia, C. H. and Owen, D. B. (1976): Handbook of Statistical Distributions. Marcel Dekker, Inc., New York.MATHGoogle Scholar
  9. [9]
    Phatarfod, R. M. (1971): A Sequential test for gamma distribution.Jour. Amer. Statist. Assoc. 66, 876–878.MATHCrossRefGoogle Scholar
  10. [10]
    Sinha, S. K. (1986): Reliability and Life-Testing. Wiley Eastern Ltd., New Delhi.Google Scholar
  11. [11]
    Stacy, E. W. (1962): A generalization of the gamma distribution.Ann. Math. Statist., 33, 1187–1192.CrossRefMathSciNetGoogle Scholar
  12. [12]
    Tyagi, R. K. and Bhattacharya, S. K. (1989a): A note on the MVU estimation of reliability for the Maxwell failure distribution.Estadistica, 41, 73–79.MathSciNetGoogle Scholar
  13. [13]
    Tyagi, R. K. and Bhattacharya, S. K. (1989b): Bayes estimator of the Maxwell's velocity distribution function.Statistica, XLIX, 563–567.MathSciNetGoogle Scholar
  14. [14]
    Wald, A. (1947): Sequential Analysis. John Wiley and Sons, New York.MATHGoogle Scholar

Copyright information

© Springer-Verlag 2000

Authors and Affiliations

  • Ajit Chaturvedi
    • 1
  • Ajay Kumar
    • 1
  • K. Surinder
    • 1
  1. 1.Department of StatisticsC.C.S. UniversityMeerutIndia

Personalised recommendations