International Journal of Pancreatology

, Volume 16, Issue 1, pp 31–36 | Cite as

The effect of L-buihionine-[S,R]-sulfoximine on the pancreas in mice

A model of weakening glutathione-based defense mechanisms
  • Reinhard E. Lüthen
  • Brent A. Neuschwander-Tetri
  • Claus Niederau
  • Linda D. Ferrell
  • James H. Grendell


L-Buthionine-[S,R]-Sulfoximine (BSO) decreases glutathione levels in various organs by inhibition of γ-glutamylcysteine synthetase. We have examined the levels of total glutathione and oxidized glutathione in the pancreas of mice, as well as serum amylase and pancreatic histology, after BSO administration in two different ways. The injection of a single dose of BSO (5 mmol/kg body wt) decreased total glutathione to 10% of the control value. A similar depletion was observed after 24 h of oral administration of a 10 mM BSO solution, without changes in the levels of oxidized glutathione. BSO-induced pancreatic glutathione depletion —even if maintained for up to 14 d—did not cause morphological alterations of the pancreas or hyperamylasemia. Thus pancreatic glutathione depletion in itself does not lead to pancreatitis, although during development of experimental acute pancreatitis, glutathione depletion has been described. BSO might be used in animal models to weaken the glutathione-based acinar defense mechanisms against oxidant stress or to alter other physiologic processes in which glutathione is involved.

Key Words

Pathophysiology of acute pancreatitis oxidant stress γ-glutamylcysteine synthetase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Griffith OW, Meister A. Glutathione: Interorgan translocation,turnover, and metabolism.Proc Natl Acad Sci USA 1979; 76: 5606–5610.PubMedCrossRefGoogle Scholar
  2. 2.
    Mårtensson J, Jain A, Meister A. Glutathione is required forintestinal function.Proc Natl Acad Sci 1990; 87: 1715–1719.PubMedCrossRefGoogle Scholar
  3. 3.
    Neuschwander-Tetri BA, Ferrell LD, Sukhabote RJ,Grendell JH. Glutathione monoethyl ester amelioratescaerulein-induced pancreatitis in the mouse.J Clin Invest 1992; 89: 109–116.PubMedCrossRefGoogle Scholar
  4. 4.
    Lüthen R, Niederau C, Grendell JH. Intrapancreatic activation of digestive zymogens during caerulein pancreatitis inrats: a possible role for changes in ATP and glutathionelevels. Submitted for publication.Google Scholar
  5. 5.
    Dabrowski A, Gabryelewicz A, Chwiecko M. Products oflipid peroxidation and changes in sulfhydryl compounds inpancreatic tissue of rats with caerulein-induced acutepancreatitis.Biochem Med Metabol Biol 1991; 46: 10–16.CrossRefGoogle Scholar
  6. 6.
    Schoenberg MH, Büchler M, Eisele S, Younes M, Beger HG. Changes in glutathione and energy metabolism in acutepancreatitis, inChirurgisches Forum 1992, Gall, Beger, Ungeheuer, eds., Springler-Verlag, Berlin/Heidelberg, 1992, pp. 201–204.Google Scholar
  7. 7.
    Niederau C, Niederau M, Borchard F, Ude C, Luthen R, Strohmeyer G, Ferrell LD, Grendell JH. Effects of antioxidantsand free radical scavengers in three differentmodels of acute pancreatitis.Pancreas 1992; 7: 486–496.PubMedCrossRefGoogle Scholar
  8. 8.
    Deneke SM, Fanburg BL. Regulation of cellular glutathione.Am J Physiol 1989; 257: L163-L173.PubMedGoogle Scholar
  9. 9.
    Githens S. Glutathione metabolism in the pancreas, compared with that in liver, kidney, and small intestine.Int JPancreatol 1991; 8: 97–109.Google Scholar
  10. 10.
    Tietze F. Enzymatic method for quantitative determinationof nanogram amounts of total and oxidized glutathione:applications to mammal blood and other tissues.AnalBiochem 1969; 27: 502–522.Google Scholar
  11. 11.
    Sachetta P, Di Cola D, Federici G. Alkaline hydrolysis ofN-ethylmaleimide allows a rapid assay of glutathionedisulfide in biological samples.Anal Biochem 1986; 154: 205–208.CrossRefGoogle Scholar
  12. 12.
    Niederau C, Ferrell LD, Grendell JH. Cerulein-inducedacute necrotizing pancreatitis in mice: protective effects ofproglumide, benzotript, and secretin.Gastroenterology 1985; 88: 1192–1204.PubMedGoogle Scholar
  13. 13.
    Freeman BA, Crapo JD. Biology of disease: Free radicalsand tissue injury.Lab Invest 1982; 47: 412–426.PubMedGoogle Scholar
  14. 14.
    Hwang C, Sinskey AJ, Lodish HF. Oxidized redox state ofglutathione in the endoplasmatic reticulum.Science 1992: 257: 1496–1502.PubMedCrossRefGoogle Scholar
  15. 15.
    Scheele G, Russell J. Conformational changes associatedwith proteolytic processing of presecretory proteins allowglutathione-catalyzed formation of native disulfide bonds.J Biol Chem 1982; 257: 12277–12282.PubMedGoogle Scholar
  16. 16.
    Jewell SA, Bellomo G, Thor H, Orrenius S. Bleb formationin hepatocytes during drug metabolism is caused bydisturbances in thiol and calcium ion homeostasis.Science 1982; 217: 1257–1259.PubMedCrossRefGoogle Scholar
  17. 17.
    Stenson WF, Lobos E, Wedner HJ. Glutathione depletioninhibits amylase release in guinea pig pancreatic acini.AmJ Physiol 1983; 244: G273–277,Google Scholar

Copyright information

© Humana Press Inc 1994

Authors and Affiliations

  • Reinhard E. Lüthen
    • 2
    • 5
  • Brent A. Neuschwander-Tetri
    • 4
  • Claus Niederau
    • 5
  • Linda D. Ferrell
    • 3
  • James H. Grendell
    • 1
    • 2
  1. 1.Gastroenterology Section, Medical ServiceVeterans Affairs Medical CenterSan Francisco
  2. 2.Department of MedicineUniversity of CaliforniaSan Francisco
  3. 3.Department of PathologyUniversity of CaliforniaSan Francisco
  4. 4.Division of Gastroenterology and Hepatology, Department of Internal MedicineSt. Louis UniversitySt. Louis
  5. 5.Division of Gastroenterology, Department of MedicineHeinrich-Heine-University of DüsseldorfGermany

Personalised recommendations