Advertisement

Mechanism of acute pancreatitis

Cellular and subcellular events
  • Sebastian Willemer
  • Guido Adler
Article
  • 44 Downloads

Summary

A membrane-bound system through which secretory and lysosomal proteins travel in a vectorial fashion is essential for the preserved integrity of pancreatic acinar cells. This system is composed of an ordered array of compartments, such as the rough endoplasmic reticulum, the Golgi complex, lysosomes, and secretory granules. As a principle, in acute pancreatitis the final steps of this transport seem to be disturbed. Caerulein-induced pancreatitis is a valuable experimental model for studying altered intracellular transport, and compartmentation of lysosomal and digestive enzymes. The formation of enlarged secretory vacuoles containing lysosomal and digestive enzymes is paralleled by the activation of lysosomes and degradation of cellular organelles in autophagosomes. On the level of secretory and autophagic vacuoles, activation of serine proteases occurs, which in addition to increasing lysosomal enzyme activities can represent the initial stage for acinar cell destruction and the development of pancreatitis.

Key Words

Acute pancreatitis lysosomal enyzmes proteases autophagic vacuoles 

References

  1. 1.
    Kern HF, Adler G, Scheele GA. The concept of flow and compartmentation in understanding the pathobiology of pancreatitis. In: Pancreatitis— Concepts and Classification, Gyr KE, Singer MV, Sarles H, eds., Amsterdam, New York, Oxford, Exerpta Medica, 1984; pp. 3–9.Google Scholar
  2. 2.
    Bieger W, Martin-Achard A, Bassler M, Kern HF. Studies on intracellular transport of secretory proteins in the rat exocrine pancreas. IV. Stimulation by in vivo infusion of caerulein. Cell Tissue Res. 1976; 165: 435–453.PubMedCrossRefGoogle Scholar
  3. 3.
    Schick J, Kern HF, Scheele GA. Hormonal stimulation in the exocrine pancreas results in coordinate and anticoordinate regulation of protein synthesis. J. Cell Biol 1984; 99: 1569–1574.PubMedCrossRefGoogle Scholar
  4. 4.
    Kern HF, Adler G, Scheele GA. Structural and biochemical characterization of maximal and supramaximal hormonal stimulation of rat exocrine pancreas. Scand. J. Gastroenterol. 1985; 20 (suppl 112): 20–29.CrossRefGoogle Scholar
  5. 5.
    Lampel M, Kern HF. Acute interstitial pancreatitis in the rat induced by excessive doses of a pancreatic secretagogue.Virchows Arch. (A) 1977; 373: 107–117.Google Scholar
  6. 6.
    Adler G, Hupp T, Kern HF. Course and spontaneous regression of acute pancreatitis in the rat. Virchows Arch. (A) 1979; 382: 31–47.Google Scholar
  7. 7.
    Adler G, Rohr G, Kern HF. Alteration of membrane fusion as a cause of acute pancreatitis in the rat. Dig. Dis. Sci. 1982; 27: 993–1002.PubMedCrossRefGoogle Scholar
  8. 8.
    Saluja A, Saito J, Saluja M, Houlihan MJ, Powers RE, Meldolesi J, Steer M. In vivo rat pancreatic acinar cell function during supramaximal stimulation with caerulein. Am. J. Physiol. 1985; 249: G702-G710.PubMedGoogle Scholar
  9. 9.
    Saito I, Hashimoto S, Saluja A, Steer ML, Meldolesi J. Intracellular transport of pancreatic zymogens during caerulein supramaximal stimulation. Am. J. Physiol. 1987; 253: G517-G526.PubMedGoogle Scholar
  10. 10.
    Saluja A, Hashimoto S, Saluja M, Powers RE, Meldolesi J, Steer ML. Subcellular redistribution of lysosomal enzymes during caerulein-induced pancreatitis. Am. J. Physiol. 1987; 253: G508-G516.PubMedGoogle Scholar
  11. 11.
    Willemer S, Bialek Rs Adler G. Localization of lysosomal and digestive enzymes in cytoplasmic vacuoles in caerulein-pancreatitis. Histochemistry 1990; 94: 161–170.PubMedCrossRefGoogle Scholar
  12. 12.
    Adler G, Hahn C, Kern HF, Rao KN. Caerulein-induced pancreatitis in rats: Increased lysosomal enzyme activity and autophagocytosis. Digestion 1985; 32: 10–18.PubMedCrossRefGoogle Scholar
  13. 13.
    Scheele GA, Adler G, Kern HF. Role of lysosomes in the development of acute pancreatitis. In: Pancreatitis — Concepts and Classification, Gyr KE, Singer MV, Sarles H, eds., Amsterdam, New York, Oxford, Exerpta Medica, 1984; pp. 17–23.Google Scholar
  14. 14.
    Watanabe O, Baccino M, Steer ML, Meldolesi J. Supramaximal caerulein stimulation and ultrastructure of rat pancreatic cell: early morphological changes during development of experimental pancreatitis. Am. J. Physiol. 1984; 246: G457-G467.PubMedGoogle Scholar
  15. 15.
    Scheele G, Adler G, Hern HF. Exocytosis occurs at the lateral plasma membrane of the pancreatic acinar cell during supramaximal secretagogue stimulation. Gastroenterology 1987; 92: 345–353.PubMedGoogle Scholar
  16. 16.
    McEntee G, Leahy A, Cotell D, Dervam P, McGeeney K, Fitzpatrick JM. Three-dimensional morphological study of the pancreatic microvasculature in caerulein-induced experimental pancreatitis. Br. J. Surg. 1989; 76: 853–855.PubMedCrossRefGoogle Scholar
  17. 17.
    Kassels B, Kay J. Zymogens of proteolytic enzymes. Science 1973; 180: 1022–1027.CrossRefGoogle Scholar
  18. 18.
    Greenbaum LM, Hirshkowitz A, Shoichet I. The activation of trypsinogen by cathepsin B. J. Biol. Chem. 1959; 234: 2885–2890.Google Scholar
  19. 19.
    Steer ML, Meldolesi J, Figarella C. Pancreatitis. The role of lysosomes. Dig. Dis. Sci. 1984; 29: 934–938.PubMedCrossRefGoogle Scholar
  20. 20.
    Steer ML, Meldolesi J. The cell biology of experimental pancreatitis. NEJM 1987; 316: 144–150.PubMedGoogle Scholar
  21. 21.
    Klöppel G, Dreyer T, Willemer S, Kern HF, Adler G. Human acute pancreatitis: Its pathogenesis in the light of immunocytochemical and ultrastructural findings in acinar cells. Virchows Arch. (A) 1986; 409: 791–803.CrossRefGoogle Scholar
  22. 22.
    Willemer S, Adler G. Histochemical and ultrastructural characterization of tubular complexes in human acute pancreatitis. Dig. Dis. Sci. 1989; 34: 46–55.PubMedCrossRefGoogle Scholar
  23. 23.
    Willemer S, Klöppel G, Kern HF, Adler G. Immunocytochemical and morphometric analysis of acinar zymogen granules in human acute pancreatitis. Virchows Arch. (A) 1989; 415: 115–123.CrossRefGoogle Scholar
  24. 24.
    Adler G, Kern HF. Fine structural and biochemical studies in human acute pancreatitis. In: Pancreatitis — Concepts and Classification, Gyr KE, Singer MV, Sarles H, eds., Amsterdam, New York, Oxford, Exerpta Medica, 1984; pp. 37–42.Google Scholar
  25. 25.
    Renner IG, Wisner JR. Protective effects of exogenous secretin on ceruletide-induced acute pancreatitis in the rat. J. Clin. Invest. 1983; 72: 1081–1092.PubMedCrossRefGoogle Scholar
  26. 26.
    Dressel TD, Goodale RL, Arneson MA, Borvar JW. Pancreatitis as a complication of anticholinesterase insecticide intoxication. Ann. Surg. 1978; 189: 198–204.Google Scholar
  27. 27.
    Bartholomew J. Acute scorpion pancreatitis in Trinidad. Br. Med. J. 1970; 1: 666–668.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 1991

Authors and Affiliations

  • Sebastian Willemer
    • 1
  • Guido Adler
    • 1
  1. 1.Department of Internal MedicinePhilipps University MarburgFRG

Personalised recommendations