On the quantum Feynman-Kac formula

  • Luigi Accardi


Markov Process Conditional Expectation Wiener Process Markov Property Clifford Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Accardi L.,Non commutative Markov chains. Proceedings, School in Math. Phys., Camerino 1974.Google Scholar
  2. [2]
    Accardi L.,Non relativistic quantum mechanics as a non-commutative Markof process. Advances in Math.20 (1976), 329–366.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Accardi L.,Problemi matematici della meccanica quantistica. Rendiconti del convegno annuale del G.N.A.F.A., Rimini 1977.Google Scholar
  4. [4]
    Accardi L.,Local perturbations of conditional expectations. To appear in: J. Math. Anal. Appl.Google Scholar
  5. [5]
    Accardi L.,Markovian cocycles. To appear in: Proceedings of the Royal Irish Academy.Google Scholar
  6. [6]
    Araki H.,Expansionals in Banach algebras. Ann. Sci. Ecole Norm. Sup.6 (1973), 67–84.MATHMathSciNetGoogle Scholar
  7. [7]
    Carmona R.,Regularity properties of Schrödinger and Dirichlet semigroups. J. Functional Analysis, to appear.Google Scholar
  8. [8]
    Carmona R.,Pointwise bounds for Schrödinger eigenstates. Comm. Math. Phys.62 (1978), 97–106.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    Davies E. B.,Generators of dynamical semigroups. Preprint Oxford.Google Scholar
  10. [10]
    Doob J. L.,Stochastic processes. John Wiley and Sons Inc. (1967).Google Scholar
  11. [11]
    Dynkin E. B.,Markov processes. Springer Verlag (1965).Google Scholar
  12. [12]
    Evans D. Google Scholar
  13. [13]
    Evans D., Lewis J. T.,Dilations of irreversible evolutions in algebraic quantum theory. Comm. DIAS no 24 (1977).Google Scholar
  14. [14]
    Feldman J..A relativistic Feynman-Kac formula. Nuclear Physics B52 (1973), 608–614.CrossRefGoogle Scholar
  15. [15]
    Ghirman I. I., Skorohod A. V.,The theory of stochastic processes. Vol. 2. Springer Verlag (1975).Google Scholar
  16. [16]
    Gorini V., Kossakowski A., Sudarshan E. C. G.,Completely positive dynamicl semigroups of n-level systems. J. Mathematical Phys.17 (1976), 821.CrossRefMathSciNetGoogle Scholar
  17. [17]
    Gross L.,Logarithmic Sobolev inequalities. Amer. J. Math.97 (1976), 1061–1083.MATHCrossRefGoogle Scholar
  18. [18]
    Hersh R., Papanicolau G.,Non-commuting random evolutions and an opepraptoprp vpalued Feynman-Kac formula. Comm. Pure Appl. Math.25 (1972), 337–367.MATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    Kac M.,On some connection between probability theory and differential and integral equations. Proc. 2nd Berkeley Symp. on Math. Stat. and Prob. (1951), 189–215.Google Scholar
  20. [20]
    Hudson R., Ion P. D. F.,Non-commutative Feynman-Kac formulae. Proceedings of the Colloquium «Random Fields: rigorous results in statistical mechnics and quantum field theory». Esztergom 1979, to appear.Google Scholar
  21. [21]
    Kantorovich L. V., Akilov G. P.,Functional analysis (in russian). Nauka (1977).Google Scholar
  22. [22]
    Kato T.,Prturbation theory for linear opertors. Springer Verlag (1976), 2nd ed..Google Scholar
  23. [23]
    Klein A., Landau L. J.,Singular perturbations of positivity preserving semigroups via path space tecniques. J. Functional Analysis20 (1975), 44–82.MATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    Lindblad G.,On the generators of quantum dynamical semigroups. Comm. Math. Phys.48 (1976), 119–130.MATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    Lindblad G.,Dissipative operators and cohomology of operator algebras. Lett. Math. Phys.1 (1976), 219–224.CrossRefMathSciNetGoogle Scholar
  26. [26]
    Malliavin P.,Formules de la moyenne, calcul de perturbations et théoremes d'annulation pour les formes harmoniques. J. Functional Analysis17 (1974), 274.MATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    Nelson E.,Topics in dynamics. I: Flows. Princeton University Press (1971).Google Scholar
  28. [28]
    Osterwalder K., Schrader R.,Euclidean Fermi fields and a Feynman-Kac formula for Boson-Fermion models. Helv. Phys. Acta,46 (1973), 277–302.MathSciNetGoogle Scholar
  29. [29]
    Pinsky M. A.,Stochastic integral representation of multiplicative operator functionals of a Wiener process. Trans. Amer. Math. Soc.167 (1972), 89–113.MATHCrossRefMathSciNetGoogle Scholar
  30. [30]
    Ray D.,On the spectra of second order differential operators. Trans. Amer. Math. Soc.77 (1954), 299–321.MATHCrossRefMathSciNetGoogle Scholar
  31. [31]
    Sakai S., C*-algebras and W*-algebras. Springer Verlag (1971).Google Scholar
  32. [32]
    Schrader R., Uhlenbrock D. A.,Markov structures on Clifford algebras. J. Functional Analysis18 (1975), 369–413.MATHCrossRefMathSciNetGoogle Scholar
  33. [33]
    Segal I. E.,Abstract probability spaces and a theorem of Kolmogorov. Amer. J. Math.76 (1954), 721–732.MATHCrossRefMathSciNetGoogle Scholar
  34. [34]
    Simon B.,Functional integration and quantum physics. Academic Press (1979).Google Scholar
  35. [35]
    Stroock D.,On certain systems of parabolic equations. Comm. Pure Appl. Math.23 (1970), 447–457.MATHCrossRefMathSciNetGoogle Scholar
  36. [36]
    Varadhan S. R. S.,Stochastic processes. Courant Lecture Notes (1967–68).Google Scholar
  37. [37]
    Widder D. V.,The Laplace transform. Princeton University Press (1946).Google Scholar
  38. [38]
    Wilde I. F.,The free Fermion field as a Markov field. J. Functional Analysis15 (1974), 12–21.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser-Verlag 1978

Authors and Affiliations

  • Luigi Accardi
    • 1
  1.' Università di MilanoMilanoItalia

Personalised recommendations