Complementary variational principles and the Bubnov-Galerkin method

  • R. J. Cole


An account is given of the simple correspondence that exists between the classical variational method for solving linear integral equations, and the Bubnov-Galerkin process. This correspondence is explored to include general complementary variational principles. The bivariational problem is also discussed.


Variational Principle Trial Function Real Hilbert Space Poiseuille Flow Fredholm Integral Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Viene qui studiata la semplice corrispondenza che esiste tra il classico metodo variazionale per equazioni integrali ed il metodo di Bubnov-Galerkin. Questa corrispondenza viene esplorata per includere principi variazionali complementari di tipo generale.

Il problema di tipo bivariazionale è anche discusso.


  1. [1]
    Cercignani C. andPagani C. D.,Variational approach to boundary value problems in kinetic theory. Physics of Fluids9 (6), 1167, June 1966.CrossRefGoogle Scholar
  2. [2]
    Cole R. J. andPack D. C.,Some complementary variational principles for linear integral equations of Fredholm type. Proc. R. Soc. Lond. A-347, 239, 1975.MATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    Mikhlin S. G.,Variational methods in Mathematical Physics. English Translation. Pergamon Press 1964.Google Scholar

Copyright information

© Birkhäuser-Verlag 1978

Authors and Affiliations

  • R. J. Cole
    • 1
  1.'Università Strathelyde di GlasgowGlasgowScotland

Personalised recommendations