Advertisement

Statistical Papers

, Volume 32, Issue 1, pp 243–252 | Cite as

A model of uniform association plus two-diagonalsparameter and its application to occupational mobility table data

  • S. Tomizawa
Articles
  • 21 Downloads

Abstract

For the analysis of square contingency tables with ordered categories, Agresti (1988) introduced a model having the structure of uniform association plus a main-diagonal parameter. This paper extends that model. The extended model has the structure of uniform association plus two-diagonals-parameter, and it is a special case of the quasi-uniform association model introduced by Goodman (1979). The Danish occupational mobility table data are analyzed using the models introduced here.

Key words

Local odds ratio Main-diagonal parameter Ordered category Quasi-uniform association Square contingency table 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agresti, A. (1984).Analysis of Ordinal Categorical Data. John Wiley & Sons, New York.zbMATHGoogle Scholar
  2. Agresti, A. (1988). A model for agreement between ratings on an ordinal scale.Biometrics 44, 539–548.zbMATHCrossRefGoogle Scholar
  3. Bishop, Y.M.M., Fienberg, S.E. and Holland, P.W. (1975).Discrete Multivariate Analysis: Theory and Practice. MIT Press, Cambridge.zbMATHGoogle Scholar
  4. Darroch, J.N. and McCloud, P.I. (1986). Category distinguishability and observer agreement.Austral. J. Statist., 28, 371–388.zbMATHCrossRefMathSciNetGoogle Scholar
  5. Darroch, J.N. and Ratcliff, D. (1972). Generalized iterative scaling for log-linear models.Ann. Math. Statist., 43, 1470–1480.CrossRefMathSciNetGoogle Scholar
  6. Duncan, O.D. (1979). How destination depends on origin in the occupational mobility table.Amer. J. Socio., 84, 793–803.CrossRefMathSciNetGoogle Scholar
  7. Goodman, L.A. (1972). Some multiplicative models for the analysis of cross-classified data. InProc. 6th Berkeley Symp. Hath. Statist. Prob., 1, 649–696, Univ. of California Press, Berkeley.Google Scholar
  8. Goodman, L.A. (1979). Simple models for the analysis of association in cross-classifications having ordered categories.J. Amer. Statist. Assoc., 74, 537–552.CrossRefMathSciNetGoogle Scholar
  9. Goodman, L.A. (1981a). Association models and canonical correlation in the analysis of cross-classifications having ordered categories.J. Amer. Statist. Assoc., 76, 320–334.CrossRefMathSciNetGoogle Scholar
  10. Goodman, L.A. (1981b). Assoclation models and the bivariate normal for contingency tables with ordered categories.Biometrika, 68, 347–355.zbMATHCrossRefMathSciNetGoogle Scholar
  11. Goodman, L.A. (1984).The Analysis of Cross-Classified Data Having Ordered Categories. Harvard Univ. Press, Cambridge.Google Scholar
  12. Haberman, S.J. (1974).The Analysis of Frequency Data. Univ. of Chicago Press, Chicago.zbMATHGoogle Scholar
  13. Kullback, S. (1971). Marginal homogeneity of multidimensional contingency tables.Ann. Math. Statist., 42, 544–606.CrossRefMathSciNetGoogle Scholar
  14. Mosteller, F. (1968). Association and estimation in contingency tables.J. Amer. Statist. Assoc., 63, 1–28.CrossRefMathSciNetGoogle Scholar
  15. Sobel, M.E., Hout, M., and Duncan, O.D. (1985). Exchange, structure, and symmetry in occupational mobility.Amer. J. Socio., 91, 359–372.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • S. Tomizawa
    • 1
  1. 1.Department of Information Sciences Faculty of Science & TechnologyScience University of TokyoNoda City, ChibaJapan

Personalised recommendations