Advertisement

Non-autonomous evolution equations with almost periodic symbols

  • Vladimir V. Chepyzhov
  • Mark I. Vishik
Article
  • 33 Downloads

Keywords

Cauchy Problem Periodic Function Hausdorff Dimension Periodic Symbol Uniform Attractor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. Amerio, G. Prouse.Abstract Almost Periodic Functions and Functional Equations. Van Nostrand, New York, 1971.Google Scholar
  2. [2]
    F.D. Babin, V.B. Vishik.Attractors of Evolution Equations. Moscow, “Nauka”, 1989.MATHGoogle Scholar
  3. [3]
    H. Bohr.Fastperiodische Functionen. Berlin, Verlag von Julius Springer, 1932.Google Scholar
  4. [4]
    P. Constantine, C. Foias, R. Temam.Attractors Representing Turbulent Flows. Mem. Amer. Math. Soc., Vol. 53, N 314, 1985.Google Scholar
  5. [5]
    C.M. Dafermos.Semi-flows Associated with Compact and Uniform Processes. Math. Systems Theory, Vol. 8, 1974, PP. 142–149.CrossRefMathSciNetGoogle Scholar
  6. [6]
    C.M. Dafermos.Almost Periodic Processes and Almost Periodic Solutions of Evolutional Equations. Proc. Univ. Florida, Int. Symp., Academic Press, New York, 1977, PP. 43–57.Google Scholar
  7. [7]
    J.K. Hale.Asymptotic Behaviour of Dissipative Systems. Math. Surverys and Monographs 25, Amer. Math. Soc., Providence, RI, 1988.Google Scholar
  8. [8]
    A. Haraux.Systèmes Dinamiques Dissipatifs et Applications. Paris, Milan, Barcelone, Rome, “Masson”, 1991.Google Scholar
  9. [9]
    A. Haraux.Two Remarks on Dissipative Hyperbolic Problems. Coll. France Seminar. Pitman Res. Notes Math., Vol. 6, 1985.Google Scholar
  10. [10]
    O.A. Ladyzhenskaya.Mathematical Problems in Dynamic of Viscous Incompressible Liquid. Moscow: “Nauka”, 1970.Google Scholar
  11. [11]
    O.A. Ladyzhenskaya.The minimal Global Attractor for Navier-Stokes Equations and other Partial Differential Equations. Uspehi Math. Nauk. Vol. 42, N6, 1987, PP. 25–60.MathSciNetGoogle Scholar
  12. [12]
    B. Levitan, V. Zhikov.Almost Periodic Functions and Differential Equations. Moscow University Press, 1978.Google Scholar
  13. [13]
    J.-L. Lions.Quelques Methodes de Resolution des Problèmes aux Limites non Linéaires. Dunod, Gauthier-Villars, Paris, 1969.MATHGoogle Scholar
  14. [14]
    G.R. Sell.Nonautonomous Differential Equations and Topological Dynamics. I, II, Americ. Math Soc., 127, 1967, PP. 241–262, 263–283.CrossRefMathSciNetGoogle Scholar
  15. [15]
    G.R. Sell.Topological Dynamics and Ordinary Differential Equations. Van Nostrand Reinhold, London 1971.MATHGoogle Scholar
  16. [16]
    R. Temam.On the Theory and Numerical Analysis of the Navier-Stokes Equations. Springer Verlag, 1974.Google Scholar
  17. [17]
    R. Temam.Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer Verlag, 1988.Google Scholar
  18. [18]
    M.I. Vishik, A.V. Fursikov.Mathematical Problems of Statistical Hydromechanics. Dortrecht, Boston, London, Kluwer Academic Publishers, 1987.Google Scholar
  19. [19]
    V.V. Chepyzhov, M.I. Vishik.Nonautonomous Evolution Equations and their Attractors. Russ. J. Math. Phys, V. 1, N2, p 1–25.Google Scholar

Copyright information

© Birkhäuser-Verlag 1992

Authors and Affiliations

  • Vladimir V. Chepyzhov
    • 1
  • Mark I. Vishik
    • 1
  1. 1.Russian Academy of ScienceUSSR

Personalised recommendations