Advertisement

Statistical Papers

, Volume 39, Issue 1, pp 75–85 | Cite as

Permutation tests — A revival?!

I. Optimum properties
  • Jens Gebhard
  • Norbert Schmitz
Notes

Abstract

It is shown that permutation tests have optimum properties for interesting classes of continuous distributions as well as for discrete ones. General conditions sufficient for uniformly maximal power on subclasses are given. Moreover, a variety of examples is presented.

Key Words

Permutation tests most powerful on subclasses two-sample problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Good P (1995) Permutation Tests, 2nd edn. Springer, New YorkGoogle Scholar
  2. Lehmann EL (1986) Testing Statistical Hypotheses, 2nd edn. Wiley, New YorkMATHGoogle Scholar
  3. Odén A, Wedel H (1975) Arguments for Fisher's permutation test. Ann. Statist. 3: 518–520CrossRefMathSciNetMATHGoogle Scholar
  4. Pfanzagl J (1994) Parametric Statistical Theory, deGruyter, BerlinMATHGoogle Scholar
  5. Schrage C (1980) Two-sample permutation test for discrete distributions. Arbeitspapier CS 01, Inst. Math. Statistik, WWU MünsterGoogle Scholar
  6. Schrage C (1982)k-Stichprobenpermutationstests bei diskreter Verteilungsannahme. PhD thesis, Westfälische Wilhelms-Universität MünsterGoogle Scholar
  7. Witting H (1985) Mathematische Statistik I, Teubner, StuttgartMATHGoogle Scholar
  8. Witting H, Nölle G (1970) Angewandte Mathematische Statistik, Teubner, StuttgartMATHGoogle Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • Jens Gebhard
    • 1
  • Norbert Schmitz
    • 1
  1. 1.Institut für Mathematische StatistikUniversität MünsterMünsterGermany

Personalised recommendations