Advertisement

Measures of finite energy on a commutative hypergroup

  • Herbert Heyer
  • Yan Wang
Lezioni e Rapporti

Summary

Some aspects of potential theory of invariant Dirichlet forms on a commutative hypergroupK are enlarged and extended. In particular measures of finite energy are characterized, and they are related to the problem of finding sufficient conditions for a continuous convolution semigroup onK to be transient.

Keywords

Dirichlet Form Unique Measure Finite Energy Convolution Semigroup Resolvent Family 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Sunto

Si estendono alcuni aspetti della teoria del potenziale delle forme di Dirichlet invarianti su un ipergruppo commutativoK. In particolare si caratterizzano le misure di energia finita.

Tali misure vengono inoltre correlate al problema di determinare condizioni sufficienti affinchè un semigruppo continuo di convoluzione suK sia transiente.

References

  1. [1]
    Berg C., Forst G., Non-symmetric translation invariant Dirichlet forms. Inventiones math. 21 (1973), 199–212.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Berg C., Forst G.,Potential Theory on Locally Compact Abelian Groups. Springer, Berlin-Heidelberg-New York 1975.MATHGoogle Scholar
  3. [3]
    Bloom W. R., Heyer H., Convolution semigroups and resolvent families of measures on hypergroups. Math. Z. 188 (1985), 449–474.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Bloom W. R., Heyer H., Non-symmetric translation invariant Dirichlet forms on hypergroups. Bull. Austral. Math. Soc. 36 (1987), 61–72.MATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    Deny J.,Méthodes Hilbertiennes en Théorie du Potentiel. In: Potential Theory, pp. 123–201. C.I.M.E. 1 Ciclo, Stresa, Rome: Ed. Cremonese 1970.Google Scholar
  6. [6]
    Forst G., The definition of energy in non-symmetric translation invariant Dirichlet spaces. Math. Ann. 216 (1975), 165–172.CrossRefMathSciNetGoogle Scholar
  7. [7]
    Heyer H., Convolution semigroups and potential kernels on a commutative hypergroup. In: The Analytical and Topological Theory of Semigroups (edited by K. H. Hofmann, J. D. Lawson, J. S. Pym), pp. 279–312. DeGruyter Expositions in Mathematics 1, Berlin-New York 1990.Google Scholar
  8. [8]
    Heyer H., Turnwald G., On local integrability and transience of convolution semigroups of measures. Acta Appl. Math. 18 (1990), 283–296.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    Lasser R., Bochner theorems for hypergroups and their applications to orthogonal polynomial expansions. J. Approx. Theory 37 (1983), 311–325.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    Voit M., Positive and negative definite functions on the dual space of a commutative hypergroup. Analysis 9 (1989), 371–387.MATHMathSciNetGoogle Scholar

Copyright information

© Birkhäuser-Verlag 1989

Authors and Affiliations

  • Herbert Heyer
    • 1
  • Yan Wang
    • 1
  1. 1.TübingenGermany

Personalised recommendations