A general theory of convexity

  • Stanley P. Gudder


A generalization of the usual notion of convexity is developed. It is shown that for certain applications some of the postulates of the generalized theory must be relaxed. The independence of the postulates is discussed and representation theorems are given. A topology which is compatible with the convexity structure is constructed.


Convex Subset Representation Theorem Octane Number Natural Topology Convex Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Si sviluppa una generalizzazione della nozione usuale di convessità. Si mostra che per certe applicazioni alcuni dei postulati della teoria generalizzata devone essere indeboliti. Si discute l’indipendenza dei postulati e si stabiliscono teoremi di rappresentazione. Si costruisce una topologia compatibile con la struttura di convessità.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Davies E. B.,Quantum Theory of Open Systems. Academic Press, New York (1976).MATHGoogle Scholar
  2. [2]
    Gudder S.,Convex structures and operational quantum mechanics. Commun. Math. Phys., 29, 249–264 (1973).CrossRefMathSciNetGoogle Scholar
  3. [3]
    Gudder S.,Convexity and mixtures. SIAM Rev., 19, 221–240 (1977).MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Gudder S.,Stochastic Methods in Quantum Mechanics. North-Holland, New York (1979).MATHGoogle Scholar
  5. [5]
    Gudder S. andSchroeck F.,Generalized convexity (to appear).Google Scholar
  6. [6]
    Mielnik B.,Geomtry of quantum states. Commun. Math. Phys., 9, 55–80 (1968).MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Rusin M.,The structure of nonlinear blending models. Chem. Eng. Sci., 30, 937–944 (1975).CrossRefGoogle Scholar
  8. [8]
    Rusin M.,A new method for representing nonlinear blending problems in a linear programming format, preprint. Amer. Petroleum Inst., Washington, D.C. (1978).Google Scholar
  9. [9]
    Stone M.,Postulates for a barycentric calculus. Ann. Math., 29, 25–30 (1949).MATHGoogle Scholar
  10. [10]
    von Neumann J. andMorgenstern O.,Theory of Games and Economic Behavior. Princeton Univ. Press, Princeton, New Jersey (1944).MATHGoogle Scholar

Copyright information

© Birkhäuser-Verlag 1979

Authors and Affiliations

  • Stanley P. Gudder
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of DenverDenverUSA

Personalised recommendations