Advertisement

Mathematical theory of «points effect» in electricity conducting surfaces

  • Gaetano Fichera
Conferenze
  • 23 Downloads

Abstract

The paper is concerned with results obtained in the problem consisting in determining the qualitative properties of the electric density and of the electric field originated by a load in equilibrium on a closed surface. In particular the asymptotic behaviour of both of them near the points and the edges of the conducting surface are studied.

Keywords

Singular Point Harmonic Function Regular Point Conducting Surface Closed Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Sunto

Vengono riportati i risultati ottenuti nel problema consistente nel determinare le proprietà qualitative della densità elettrica e del campo elettrico originati da una carica in equilibrio su una superficie chiusa. In particolare si studia il comportamento asintotico dell’una e dell’altro in prossimità delle punte e degli spigoli della superficie conduttrice.

References

  1. [1]
    Sneider M. A.,Sulla capacità elettrostatica di una superficie chiusa. Mem. Accad. Naz. Lincei VIII, X, 1970, pp. 97–215.Google Scholar
  2. [2]
    Petrovsky I. G.,Lectures on Partial Differential Equations. Interscience, New York, 1954.MATHGoogle Scholar
  3. [3]
    Picone M.,Appunti di Analisi superiore. Rondinella Napoli, 1940.Google Scholar
  4. [4]
    Fichera G.,Teoremi di completezza sulla frontiera di un dominio per taluni sistemi di funzioni. Ann. Matem. pura ed appl. IV, XXVII, 1948, pp. 1–28.CrossRefGoogle Scholar
  5. [5]
    Gunther N. M.,Die Pontentialtheorie. G. Teubner, Leipzig, 1957.Google Scholar
  6. [6]
    Gagliardo E.,Proprietà di alcune classi di funzioni in più variabili. Ricerche di Matem. VII, 1958, pp. 102–137.MathSciNetGoogle Scholar
  7. [7]
    Fichera G.,Linear elliptic differential systems and eigenvalue problems. Lecture Notes in Mathematics 8, Springer, Heidelberg, 1965.MATHGoogle Scholar
  8. [8]
    Castellani Rizzonelli P.,On the first boundary value problem for the classical theory of elasticity in a three-dimensional domain with a singular boundary. Jour. of Elasticity, 3, 4, 1973, pp. 225–259.CrossRefGoogle Scholar
  9. [9]
    Fichera G.,Asymptotic behaviour of the electric field and density of the electric charge in the neighborhood of singular points of a conducting surface (in russian). Uspekhi Mat. Nauk, 30: 3, 1975, pp. 105–124; English translation: Russian Math. Surveys, 30: 3, 1975, pp. 107–127; Ital. translation: Rend. Sem. Mat. Univ. Polit. Torino, 32, 1973–74, pp. 111–143.MATHMathSciNetGoogle Scholar
  10. [10]
    Courant R.Hilbert D.,Methods of Mathematical Physics. Vol. I, Interscience Publ., New York, 1953.Google Scholar
  11. [11]
    Fichera G.Sneider M. A.,Distribution de la charge électrique dans le voisinage des sommets et des arêtes d’un cube. C. R. Acad. Sci. Paris, 278 A, 1974, pp. 1303–1306.MATHMathSciNetGoogle Scholar
  12. [12]
    Fichera G.,Asymptotic behaviour of the electric field near the singular points of the conducting surface (in russian). Proceed. of the Conference in honour of I. G. Petrovski 75th Anniversary (Moscow 1976); Univ. of Moscow Publ. 1978, pp. 230–235. English transl.: Rend. Acc. Naz. Lincei, vol. LX, pp. 13–20.Google Scholar

Copyright information

© Birkhäuser-Verlag 1979

Authors and Affiliations

  • Gaetano Fichera
    • 1
  1. 1.dell’ Università di RomaRomaItaly

Personalised recommendations