Elliptic boundary value problems in unbounded domains with noncompact and nonsmooth boundaries

  • V. N. Maslennikova
  • M. E. Bogovskiï


We study the solvability and the uniqueness inL p (1<p<+∞) of solutions to elliptic boundary value problems related to unbounded domains whose boundaries contain a finite number of corners.


Closed Subspace Neumann Problem Unbounded Domain Elliptic Boundary Homogeneous Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Si studia la risolubilità e l'unicità inL p (1<p<+∞) della soluzione di problemi al contorno ellittici in domini illimitati la cui frontiera contiene un numero finito di punti angolosi.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Kondrat'ev V. A. andOleinik O. A.,Boundary-value problems for partial differential equations in non-smooth domains, Russian Mathematical Surveys (London Math. Soc.), vol. 38 (1983), pp. 1–86.CrossRefMATHGoogle Scholar
  2. [2]
    Mazja V. G. andPlamenevskii B. A.,Estimates in L p and in the Hölder classes and Miranda-Agmon's principle for the solvability of elliptic boundary value problems in domains with irregular points on the boundary, (Russian), Math. Nachr., Bd. 81 (1978), p. 25–82.CrossRefMathSciNetGoogle Scholar
  3. [3]
    Bogovskiî M. E.,Decomposition of L p (Ω: ℝn)into a direct sum of subspaces connected with solenoidal and potential vector fields. (Russian), Dokl. Akad. Nauk. S.S.S.R. 286 (1986), p. 781–786.Google Scholar
  4. [4]
    Heywood J. G.,On uniqueness questions in the theory of viscous flow, Acta Math., vol. 136 (1976), pp. 61–102.CrossRefMathSciNetMATHGoogle Scholar
  5. [5]
    Bogovskiî M. E.,On the L p-theory of the Navier-Stokes system for unbounded domain with noncompact boundaries, Soviet Math. Dokl., vol. 22 (1980), pp. 809–814.Google Scholar
  6. [6]
    Maslennikova V. N. andBogovskiî M. E.,Approximation of solenoidal and potential vector fields in Sobolev spaces and problems of Mathematical Physics. (Russian) contained in the book:Partial Differential Equations Nauka, Novosibirsk (1986), p. 129–137.Google Scholar
  7. [7]
    Grisvard P.,Elliptic problems in nonsmooth domains, Boston-London-Melbourne, Pitman Advanced Publications Program, 1985, 410 p.Google Scholar

Copyright information

© Birkhäuser-Verlag 1986

Authors and Affiliations

  • V. N. Maslennikova
    • 1
  • M. E. Bogovskiï
    • 1
  1. 1.Dept. of Differential Equations and Functional Analysis Friendship of Nations University MoscowUSSR

Personalised recommendations