Advertisement

Le phénomène de la moyennabilité

  • Jean-Paul Pier
Conferenze
  • 24 Downloads

Sunto

I gruppi mediabili sono dei particolari gruppi localmente compatti che si caratterizzano con condizioni di invarianza o di quasi-invarianza in Analisi armonica. Proprietà di questo tipo si ritrovano in altri campi soprattutto per delle Algebre di Banach.

Summary

Amenable groups constitue specific locally compact groups that are characterized by invariance or quasi-invariance conditions in harmonic analysis. Properties of that kind appear to be important in other domains, especially for Banach algebras.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    Banach S.,Sur la problème de la mesure. Fund. Math.4, p. 7–33 (1923).MATHGoogle Scholar
  2. [2]
    Banach S. etTarski A.,Sur la décomposition des ensembles de points en parties respectivement congruentes. Fund. Math.6, p. 244–277 (1924).Google Scholar
  3. [3]
    Berg C. etChristensen J. P. R.,Sur la norme des opérateurs de convolution. Invent. Math.23, p. 173–178 (1974).CrossRefMathSciNetMATHGoogle Scholar
  4. [4]
    Bohr H.,Fastperiodische Funktionen. Springer-Verlag, Berlin (1932).Google Scholar
  5. [5]
    Cohen J. M.,Cogrowth and amenability of discrete groups. J. Functional Analysis48, p. 301–309 (1982).CrossRefMATHGoogle Scholar
  6. [6]
    Connes A.,Classification des facteurs. Operator algebras and applications, vol.2. p. 43–109. AMS, Providence (1982).Google Scholar
  7. [7]
    Day M. M.,Means on semigroups and groups. Bull. Amer. Math. Soc.55, p. 1054–1055 (1949).Google Scholar
  8. [8]
    Day M. M.,Means for the bounded functions and ergodicity of the bounded representations of semigroups. Trans. Amer. Math. Soc.69, p. 276–291 (1950).CrossRefMathSciNetMATHGoogle Scholar
  9. [9]
    Derriennic Y. etGuivarc’h Y.,Théorème de renouvellement pour les groupes non moyennables. C. R. Acad. Sci. Paris Sér. A277, p. 613–615 (1973).MathSciNetMATHGoogle Scholar
  10. [10]
    Dixmier J.,Les moyennes invariantes dans les semi-groupes et leurs applications. Acta Sci. Math. (Szeged)12, p. 213–227 (1950).MathSciNetGoogle Scholar
  11. [11]
    Emerson W. R.,Characterizations of amenable groups. Trans. Amer. Math. Soc.241, p. 183–194 (1978).CrossRefMathSciNetMATHGoogle Scholar
  12. [12]
    Emerson W. R. etGreenleaf F. P.,Covering properties and Fólner conditions for locally compact groups. Math. Z.102, p. 370–384 (1967).CrossRefMathSciNetMATHGoogle Scholar
  13. [13]
    Eymard P.,L’algèbre de Fourier d’un groupe localement compact. Bull. Sci. Math.92, p. 181–236 (1964).MathSciNetMATHGoogle Scholar
  14. [14]
    Eymard P.,Algèbres Ap et convoluteurs de Lp(G). Séminaire Bourbaki. Lecture Notes in Mathematics, vol.180, p. 364–381. Springer-Verlag, Berlin-Heidelberg-New York (1971).Google Scholar
  15. [15]
    Eymard P.,Moyennes invariantes et représentations unitaires. Lecture Notes in Mathematics, vol.300. Springer-Verlag, Berlin-Heidelberg-New York (1972).MATHGoogle Scholar
  16. [16]
    Flory V.,Eine Lebesgue-Zerlegung und funktorielle Eigenschaften der Fourier-Stieltjes Algebra. Inaugural Dissertation Univ. Heidelberg (1972).Google Scholar
  17. [17]
    Følner E.,On groups with full Banach mean value. Math. Scand.3, p. 243–254 (1955).MathSciNetGoogle Scholar
  18. [18]
    Furstenberg H.,A Poisson formula for semi-simple Lie groups. Ann. of Math.77, p. 335–386 (1963).CrossRefMathSciNetGoogle Scholar
  19. [19]
    Godement R.,Les fonctions de type positif et la théorie des groupes. Trans. Amer. Math. Soc.63, p. 1–84 (1948).CrossRefMathSciNetMATHGoogle Scholar
  20. [20]
    Granirer E. E.,Criteria for compactness and for discreteness of locally compact amenable groups. Proc. Amer. Math. Soc.40, p. 615–624 (1973).CrossRefMathSciNetMATHGoogle Scholar
  21. [21]
    Greenleaf F. P.,Invariant means on topological groups. Van Nostrand, New York-Toronto-London-Melbourne, (1969).MATHGoogle Scholar
  22. [22]
    Greenleaf F. P.,Amenable actions of locally compact groups. J. Functional Analysis4, p. 295–315 (1969).CrossRefMathSciNetMATHGoogle Scholar
  23. [23]
    Greenleaf F. P.,Ergodic theorems and the construction of summing sequences in amenable locally compact groups. Comm. Pure Appl. Math.26, p. 29–46 (1973).CrossRefMathSciNetMATHGoogle Scholar
  24. [24]
    Greenleaf F. P. etEmerson W. R.,Group structure and the pointwise ergodic theorem for connected amenable groups. Advances in Math.14, p. 153–172 (1974).CrossRefMathSciNetMATHGoogle Scholar
  25. [25]
    Grigorčuk R. I.,Symmetric random walks on discrete groups (En russe). Uspehi Mat. Nauk35, p. 132–152 (1978).Google Scholar
  26. [26]
    Haagerup U.,All nuclear C*-algebras are amenable. Invent. Math.74, p. 305–319 (1983).CrossRefMathSciNetMATHGoogle Scholar
  27. [27]
    Haar A.,Maßbegriff in der Theorie der kontinuierlichen Gruppen. Ann. of Math.34, p. 147–169 (1933).CrossRefMathSciNetGoogle Scholar
  28. [28]
    Hausdorff F.,Grundzüge der Mengenlehre. Veit, Leipzig (1914); nouvelle édition Chelsea Publishing Company, New York (1978).MATHGoogle Scholar
  29. [29]
    Herz C.,Harmonic synthesis for subgroups. Ann. Inst. Fourier (Grenoble)XXIII, 3, p. 91–123 (1973).MathSciNetGoogle Scholar
  30. [30]
    Herz C.,Une généralisation de la notion de transformée de Fourier-Stieltjes. Ann. Inst. Fourier (Grenoble)XXIV, 3, p. 145–157 (1974).MathSciNetGoogle Scholar
  31. [31]
    Johnson B. E.,Cohomology in Banach algebras. Mem. Amer. Math. Soc.127 (1972).Google Scholar
  32. [32]
    Kesten H.,Full Banach mean values on countable groups. Illinois J. Math.16, p. 257–269 (1972).MathSciNetGoogle Scholar
  33. [33]
    Kunze R. A. etStein E. M.,Uniformly bounded representations and harmonic analysis of the 2×2 real unimodular group. Amer. J. Math.82, p. 1–62 (1960).CrossRefMathSciNetMATHGoogle Scholar
  34. [34]
    Lebesgue H. Leçons sur l’intégration et la recherche des fonctions primitives. Gauthier-Villars, Paris (1904); nouvelle édition Chelsea Publishing Company, New York (1973).Google Scholar
  35. [35]
    Leptin H.,Sur l’algèbre de Fourier d’un groupe localement compact. C. R. Acad. Sci. Paris Sér. A266, p. 1180–1182 (1968).MathSciNetMATHGoogle Scholar
  36. [36]
    Leptin H.,Zur harmonischen Analyse klassenkompakter Gruppen. Invent. Math.5, p. 249–254 (1968).CrossRefMathSciNetMATHGoogle Scholar
  37. [37]
    Losert V.,Some properties of groups without property (P1). Comment. Math. Helv.54, p. 133–139 (1979).CrossRefMathSciNetMATHGoogle Scholar
  38. [38]
    Neumann J. von,Zur allgemeinen Theorie des Masses. Fund. Math.13, p. 73–116 (1929).MATHGoogle Scholar
  39. [39]
    Neumann J. von,Almost periodic functions in a group I. Trans. Amer. Math. Soc.36, p. 445–492 (1934).CrossRefMathSciNetMATHGoogle Scholar
  40. [40]
    Ol’Sanskiî A. Ju.,On the question of the existence of an invariant mean on a group (En russe). Uspehi Mat. Nauk35, p. 199–200 (1980).Google Scholar
  41. [41]
    Pier J.-P.,Amenable locally compact groups. John Wiley and Sons, New York (1984).Google Scholar
  42. [42]
    Reiter H.,On some properties of locally compact groups. Nederl. Wetensch. Proc. Ser. A68, p. 697–701 (1965).MathSciNetGoogle Scholar
  43. [43]
    Rickert N. W.,Amenable groups and groups with the fixed point property. Trans. Amer. Math. Soc.127, p. 221–232 (1967).CrossRefMathSciNetMATHGoogle Scholar
  44. [44]
    Rosenblatt J. M.,Invariant means and invariant ideals in L (G)for a locally compact group G. J. Functional Analysis21, p. 31–51 (1976).CrossRefMathSciNetMATHGoogle Scholar
  45. [45]
    Rosenblatt J. M.,The number of extensions of an invariant mean. Compositio Math.33, p. 147–159 (1976).MathSciNetGoogle Scholar
  46. [46]
    Sakai K.,On linear representations of amenable groups. Sci. Rep. Kagoshima Univ.25, p. 53–68 (1976).MATHGoogle Scholar
  47. [47]
    Schwartz J. T.,Two finite, non-hyperfinite, non-isomorphic factors. Comm. Pure Appl. Math.16, p. 19–26 (1963).CrossRefMathSciNetMATHGoogle Scholar
  48. [48]
    Tarski A.,Sur l’équivalence des polygones. Przeglad mat.-fiz.,2, p. 47–60 (1924).Google Scholar
  49. [49]
    Tits J.,Free subgroups in linear groups. J. Algebra 20, p. 250–270 (1972).CrossRefMathSciNetMATHGoogle Scholar
  50. [50]
    Weil A.,L’intégration dans les groupes topologiques et ses applications. Deuxième édition. Hermann, Paris (1953).Google Scholar
  51. [51]
    Zimmer R. J.,Amenable pairs of groups and ergodic actions and the associated von Neumann algebras. Trans. Amer. Math. Soc.243, p 271–286 (1978).CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Birkhäuser-Verlag 1983

Authors and Affiliations

  • Jean-Paul Pier
    • 1
  1. 1.Centre universitaire de LuxembourgLuxembourgBelgium

Personalised recommendations