Advertisement

Alcuni recenti contributi alla teoria dei gruppi infiniti risolubili

  • John S. Wilson
Conferenze
  • 20 Downloads

Sunto

Vengono discussi alcuni recenti risultati sui gruppi infiniti risolubili. Si tratta dei gruppi i cui quozienti propri sono tutti policiclici, di una nuova caratterizzazione dei gruppi finitamente generabili e minimax e dei prodotti di gruppi minimax.

Summary

Some recent results on infinite soluble groups are discussed. These concern groups all of whose proper quotients are polycyclic, a new characterisation of finitely generated minimax groups, and products of minimax groups.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. [1]
    Amberg B., Robinson D. J. S.,Soluble groups which are products of minimax groups. Archiv Math. (Basel)42 (1984), 385–390.MathSciNetGoogle Scholar
  2. [2]
    Bergman G. M.,The logarithmic limit set of an algebraic variety. Trans. Amer. Math. Soc.157 (1971), 459–469.CrossRefMathSciNetGoogle Scholar
  3. [3]
    Groves J. R. J.,Soluble groups with every proper quotient polycyclic. Illinois J. Math.22 (1978), 90–95.MathSciNetMATHGoogle Scholar
  4. [4]
    Itô N.,Über das Produkt von zwei abelschen Gruppen. Math. Z.62 (1955), 400–401.CrossRefMathSciNetMATHGoogle Scholar
  5. [5]
    Kropholler P. H.,On finitely generated soluble groups with no large wreath product sections. Proc. London Math. Soc. (3),49 (1984), 155–169.CrossRefMathSciNetMATHGoogle Scholar
  6. [6]
    Robinson D. J. S.,On the cohomology of soluble groups of finite rank. J. Pure Appl. Algebra6 (1975), 155–164.CrossRefMathSciNetMATHGoogle Scholar
  7. [7]
    Robinson D. J. S., Wilson, J. S.,Soluble groups with many polycyclic quotients. Proc. London Math. Soc. (3),48 (1984), 193–229.CrossRefMathSciNetMATHGoogle Scholar
  8. [8]
    Wilson J. S.,On products of soluble groups of finite rank. Comment. Math. Helvetici.Google Scholar
  9. [9]
    Zaičev D. I.,Products of abelian groups. Algebra i Logika19 (1980), no. 2, 150–172, 250.MathSciNetGoogle Scholar

Copyright information

© Birkhäuser-Verlag 1983

Authors and Affiliations

  • John S. Wilson
    • 1
  1. 1.dell’Università di CambridgeUK

Personalised recommendations