Advertisement

Statistical Papers

, Volume 31, Issue 1, pp 195–207 | Cite as

A new variables sampling plan for normally distributed lots with unknown standard deviation and double specification limits

  • M. Bruhn-Suhr
  • W. Krumbholz
Articles

Abstract

We deal with single sampling by variables with two-way-protection in case of normally distributed characteristics with unknown variance. Givenp 1(AQL),p 2 (LQ) and α, β (risks of errors of the first and the second kind), there are two well-known methods of determining the corresponding sampling plans. Both methods are based on an approximation of the OC. Therefore these plans are only approximations, the true risks α and β are not known exactly. In section II we present a new sampling scheme based on an estimatorp for the percent defectivep. We give an exact formula for the OC. Thus we are able to determine these plans exactly without any approximations.

Keywords

Specification Limit Sampling Plan Tolerance Interval Lower Specification Limit Exact Plan 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Billingsley (1968):Convergence of Probability Measures. New York-London-Sydney-TorontoGoogle Scholar
  2. M. Bruhn-Suhr, W. Krumbholz, T. Schueler (1987):Zur Bestimmung einfacher Variablenprüfpläne im Fall normalverteilter Merkmale mit unbekannter Varianz und zweiseitigen Toleranzgrenzen. Diskussionsbeiträge zur Statistik und Quantitativen Ökonomik Nr. 26, Universität der Bundeswehr HamburgGoogle Scholar
  3. M. Bruhn-Suhr, W. Krumbholz (1987):Ein neuer Variablenprüfplan für den Fall der Normalverteilung mit unbekannter Varianz und zweiseitigen Toleranzgrenzen. Diskussionsbeiträge zur Statistik und Quantitativen Ökonomik Nr. 27, Universität der Bundeswehr HamburgGoogle Scholar
  4. A. J. Duncan (1974):Quality Control and Industrial Statistics. 4th edn., Homewood, IllinoisGoogle Scholar
  5. G. J. Lieberman, G. J. Resnikoff (1955):Sampling Plans for Inspection by Variables. Journal of the American Statistical Association 50, 457–516.MATHCrossRefMathSciNetGoogle Scholar
  6. G. J. Resnikoff (1952):A New Two Sided Acceptance Region for Sampling by Variables. Technical Report Nr. 8, Applied Mathematics and Statistics Laboratory, Stanford UniversityGoogle Scholar
  7. M. Schader, F. Schmid (1984):Distribution Functions and Percentage Points for Central and Noncentral χ 2-, t- and F-Distributions. A Collection of Computer Programs in FORTRAN. Diskussionsbeiträge zur Statistik und Quantitativen Ökonomik Nr. 18, Universität der Bundeswehr HamburgGoogle Scholar
  8. W. Uhlmann (1982):Statistische Qualitätskontrolle. 2nd edn. StuttgartGoogle Scholar
  9. J. Wolfowitz (1946):Confidence Limits for the Fraction of a Normal Population Which Lies between Two Given Limits. The Annals of Mathematical Statistics, Vol.17, No.4, 483–488CrossRefMathSciNetGoogle Scholar
  10. S. Zacks (1971):The Theory of Statistical Inference. New York-London-Sydney-TorontoGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • M. Bruhn-Suhr
    • 1
  • W. Krumbholz
    • 1
  1. 1.Institut für Statistik und Quantitative ÖkonomikUniversität der Bundeswehr HamburgHamburg 70

Personalised recommendations