Advertisement

Statistical Papers

, Volume 31, Issue 1, pp 65–76 | Cite as

Inequality indices: theoretical and empirical aspects of their asymptotic behaviour

  • Giovanni M. Giorgi
  • Andrea Pallini
Articles

Abstract

The authors use a Berry-Esseen type bound to identify the factors which influence the speed of convergence to the normal distribution of the indices of Gini, Piesch and Mehran. To empirically confirm the conclusions reached, a Monte Carlo experiment is performed for a log-logistic distribution.

Key Words

Gini, Piesch and Mehran inequality indices speed of convergence to the normal distribution Berry-Esseen type bound Monte Carlo experiment log-logistic distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berry, A.C. (1941). The Accuracy of the Gaussian Approximation of the Sum of Independent Variates. Transactions American Mathematical Society, Vol. 49, No. 1, pp. 122–136.CrossRefMathSciNetMATHGoogle Scholar
  2. Cramèr, H. (1946). Mathematical Methods of Statistics. Princeton University Press, Princeton.MATHGoogle Scholar
  3. Cucconi, O. (1965). Sulla distribuzione campionaria del rapporto R di concentrazione. Statistica, Vol. 25, No. 1, pp. 119–138.Google Scholar
  4. D'Agostino, R.B., Stephens, M.A. (1986). Goodness-of-fit Techniques. Dekker, New York.MATHGoogle Scholar
  5. Dagum, C. (1980). Generating Systems and Properties of Income Distribution Models. Metron, Vol. 38, No. 3-4, pp. 3–26.MathSciNetMATHGoogle Scholar
  6. Dall'Aglio, G. (1965). Comportamento asintotico delle stime della differenza media e del rapporto di concentrazione. Metron, Vol. 24, No. 1-4, pp. 379–414.MathSciNetMATHGoogle Scholar
  7. David, H. (1981). Order Statistics. Wiley, New York.MATHGoogle Scholar
  8. Esseen, C.G. (1945). Fourier Analysis of Distribution Functions. A Mathematical Study of the Laplace-Gaussian Law. Acta Mathematica, Vol. 77, pp. 1–125.CrossRefMathSciNetMATHGoogle Scholar
  9. Gastwirth, J.L. (1971). A General Definition of the Lorenz Curve. Econometrica, Vol. 39, No. 6, pp. 1037–1039.CrossRefMATHGoogle Scholar
  10. Giaccardi, F. (1950). Indici di concentrazione. Giornale degli Economisti e Annali di Economia (n.s.), Vol. 9, No. 5-6, pp. 282–290.Google Scholar
  11. Gini, C. (1914). Sulla misura della concentrazione e della variabilità dei caratteri. Atti del Reale Istituto Veneto di Scienze Lettere ed Arti, A.A. 1913–1914, Vol. 73, Pt. 2, pp. 1203–1248.Google Scholar
  12. Giorgi, G.M., Pallini A. (1987). On the Speed of Convergence to the Normal Distribution of Some Inequality Indices, Metron, Vol. 45, No. 3-4, pp. 137–149.Google Scholar
  13. Girone, G. (1968). Sul comportamento campionario simulato del rapporto di concentrazione. Annali della Facoltà di Economia e Commercio, Università di Bari, Vol. 23, pp. 511–517.Google Scholar
  14. Helmers, R. (1977). The Order of the Normal Approximation for Linear Combinations of Order Statistics with Smooth Weight Functions. Annals of Probability, Vol. 5, No. 6, pp. 940–953.CrossRefMathSciNetMATHGoogle Scholar
  15. Hill, I. D. (1973). Algorithm AS66: The Normal Integral. Applied Statistics. Vol. 22, No. 3, pp. 424–427.CrossRefGoogle Scholar
  16. Hoeffding, W. (1948). A Class of Statistics with Asymptotically Normal Distribution. Annals of Mathematical Statistics, Vol. 19, pp. 293–325.CrossRefMathSciNetMATHGoogle Scholar
  17. Mehran, F. (1976). Linear Measures of Income Inequality. Econometrica, Vol. 44, No. 4, pp. 805–809.CrossRefMathSciNetGoogle Scholar
  18. Michetti, B., Dall'Aglio, G. (1957). La differenza semplice media. Statistica, Vol. 17, No. 2, pp. 159–255.MathSciNetGoogle Scholar
  19. Nygard, F., Sandström, A. (1981). Measuring Income Inequality. Almqvist & Wicksell International, Stockholm.Google Scholar
  20. Nygard, F., Sandström, A. (1985). The Estimation of the Gini and the Entropy Inequality Parameters in Finite Populations. J. Official Statistics, Vol. 1, No. 4, pp. 399–412.Google Scholar
  21. Patel, J.K., Read, C.B. (1982). Handbook of the Normal Distribution. Dekker, New York.MATHGoogle Scholar
  22. Patil, G.P., Boswel, M.T., Ratnaparkhi, M.V. (1984). Dictionary and Classified Bibliography of Statistical Distributions in Scientific Work: Continuous Univariate Models, Vol. 2. International Co-operative Publishing House, Burtonsville.Google Scholar
  23. Piesch, W. (1975). Statistische Konzentrationsmasse. Mohr (Paul Siebeck), Tübingen.Google Scholar
  24. Pietra, G. (1915). Delle relazioni tra gli indici di variabilità (I, II). Atti del reale Istituto Veneto di Scienze Lettere ed Arti, A.A. 1914–1915, Vol. 74, Pt. 2, pp. 775–804.Google Scholar
  25. Sandström, A. (1983). Estimating Income Inequality: Large Sample Inference in Finite Populations. Department of Stat istics, Research Report 1983:5, University of Stockholm.Google Scholar
  26. Sendler, W. (1979). On Statistical Inference in Concentration Measurement, Metrika, Vol. 26, No. 2, pp. 109–122.MathSciNetMATHGoogle Scholar
  27. Stephens, M.A. (1974). EDF Statistics for Goodness-of-fit and Some Comparisons. J.A.S.A., Vol. 69, No. 347, pp. 730–737.Google Scholar
  28. Stigler, S.M. (1974). Linear Functions of Order Statistics with Smooth Weight Functions. Annals of Statistics, Vol. 2, No. 4, pp. 676–693.CrossRefMathSciNetMATHGoogle Scholar
  29. Wichmann, B.A., Hill, I.D. (1982). Algorithm AS183: An Efficient and Portable Pseudo-random Number Generator. Applied Statistics, Vol. 31, No. 2, pp. 188–190.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Giovanni M. Giorgi
    • 1
  • Andrea Pallini
    • 1
  1. 1.Istituto di StatisticaFacoltà di Scienze Economiche e BancarieSiena(Italy)

Personalised recommendations