Advertisement

International Journal of Pancreatology

, Volume 12, Issue 2, pp 167–172 | Cite as

Protective effect of nafamostat mesilate

  • Tadao Manabe
  • Tetsuya Hirano
  • Katsuhiro Imanishi
  • Katsuhiro Ando
  • Fumiaki Yotsumoto
  • Takayoshi Tobe
Article
  • 32 Downloads

Summary

This in vivo and in vitro study demonstrates the protective effects of a new synthetic protease inhibitornafamostat mesilate, FUT-175—on increased cellular and lysosomal fragility within acinar cells during the early stage of cerulein-induced acute pancreatitis in rats. FUT-175 prevented hyperamylasemia, pancreatic edema, congestion owing to amylase, and lactic dehydrogenase (LDH) discharge from acini as well as cathepsin-B leakage from lysosomes dose-dependently in doses of 1-10 mg/kg h. These results suggest that FUT-175 can protect against pancreatitis at subcellular levels in lysosomes and cellular or organelle membranes. Proteases may well play the important role in the pathogenesis of acute pancreatitis, and such a low molecular protease inhibitor may be useful clinically in the treatment of acute pancreatitis.

Key Words

Cerulein-induced pancreatitis cathepsin-B lactic dehydrogenase (LDH) nafamostat mesilate (FUT-175) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Saluja A, Hashimoto S, Saluja M, Powers RE, Meldolesi J, Steer ML. Subcellular redistribution of lysosomal enzymes during cerulein-induced pancreatitis.Am J Physiol 1987; 253: G508-G516.PubMedGoogle Scholar
  2. 2.
    Watanabe O, Baccino FM, Steer ML, Meldolesi J. Supramaximal cerulein stimulation and ultrastructure of rat pancreatic acinar cell: early morphological changes during development of experimental pancreatitis.Am J Physiol 1984; 246: G457-G467.PubMedGoogle Scholar
  3. 3.
    Greenbaum LM, Hirshkowitz A, Schoichet I. The activation of trypsinogen by cathepsin-B.J Biol Chem 1959; 234: 2885–2890PubMedGoogle Scholar
  4. 4.
    Greenbaum LM, Hirshkowitz A. Endogenous cathepsin activation of trypsinogen in extracts of dog pancreas.Proc Soc Exp Biol Med 1961; 107: 74–76.PubMedGoogle Scholar
  5. 5.
    Rinderknecht H. Activation of pancreatic zymogens: normal activation, premature intrapancreatic activation, protective mechanism against inappropriate activation.Dig Dis Sci 1986; 31: 314–321.PubMedCrossRefGoogle Scholar
  6. 6.
    Figarella C, Miszczuk-Jamska B, Barrett AJ. Possible lysosomal activation of pancreatic zymogens: activation of both human trypsinogen by cathepsin-B and spontaneous acid activation of human trypsinogen I.Biol Chem Hoppe-Seyler 1988; 369(Suppl.) 293–295.PubMedGoogle Scholar
  7. 7.
    Beck JT, Pinter E, Solymar J, McKenna RD, Ritchie AC. The role of pancreatic enzymes in the pathogenesis of acute pancreatitis: the fate of pancreatic proteolytic enzymes in the course of acute pancreatitis.Gastro enterology 1962; 43: 60–70.Google Scholar
  8. 8.
    Katz W, Silverstein M, Kobold EE, Thal AP. Trypsin release, kinin production and shock: relationship in experimental and human pancreatitis.Arch Surg 1964; 89: 322–331.PubMedGoogle Scholar
  9. 9.
    Creutzfeld W, Schmist H. Aetiology and pathogenesis of pancreatitis.Scand J Gastroenterol 1970; 6(Suppl.): 47–62.Google Scholar
  10. 10.
    Trapnell JE. Pathophysiology of acute pancreatitis.World J Surg 1981; 5: 319–327.PubMedCrossRefGoogle Scholar
  11. 11.
    Powers RE, Saluja AK, Houlihan MJ, Steer ML. Diminished against-stimulated inositol triphosphate generation block stimulus-secretion coupling in mouse pancreatic acini during diet-induced experimental pancreatitis.J Clin Invest 1986; 77: 1668–1674.PubMedCrossRefGoogle Scholar
  12. 12.
    Tartakoff A, Jamieson JE. Fractionation of guinea pig pancreas.Methods Enzymol 1974; 31: 41–59.PubMedCrossRefGoogle Scholar
  13. 13.
    Bernfeld P. Amylase a and \.Methods Enzymol 1955; 1: 149–158.CrossRefGoogle Scholar
  14. 14.
    LaB arca C, Paigen K. A simple, rapid and sensitive DNA assay procedure.Anal Biochem 1980; 102: 334–352.Google Scholar
  15. 15.
    McDonald JK, Ellis S. On the substrate specificity of cathepsin B1 and B2 including a new fluorogenic substrate for cathepsin B.Life Sci 1975; 17: 1269–1276.PubMedCrossRefGoogle Scholar
  16. 16.
    Bergmeyer HU, Bernt E, Hess B. Lactic dehydrogenase.Methods in Enzymatic Analysis, Bergmeyer HU, ed., Academic, New York, 1963; pp. 736–741.Google Scholar
  17. 17.
    Fujii S, Hitomi Y. New synthetic inhibitors of C1F, C1 esterases, thrombin, plasmin, kallikrein and trypsin.Biochem Biophys Acta 1981; 661: 342–345.PubMedGoogle Scholar
  18. 18.
    Aoyama T, Ino Y, Ozeki M, Oda M, Sato T, Koshiyama Y, Suzuki S, Fujita M. Pharmacological studies of FUT- 175, nafamostat mesilate: inhibitor of protease activity in in vitro and in vivo experiments.Jpn J Pharmacol 1984; 35: 203–227.PubMedGoogle Scholar
  19. 19.
    Iwaki M, Ozeki M, Sato T, Suzuki K, Motoyoshi A, Suzuki S, Fujita M, Aoyama T. Pharmacological studies of FUT- 175, nafamostat mesilate: effects on experimental acute pancreatitis.Folia Pharmacol 1984; 84: 363–372.CrossRefGoogle Scholar
  20. 20.
    Iwaki M, Ino Y, Motoyoshi A, Ozeki M, Sato T, Kurumi M, Aoyama T. Pharmacological studies of FUT-175, nafamstat mesilate: effects on pancreatic enzymes and experimental acute pancreatitis in rats.Jpn J Pharmacol 1986; 41: 155–162.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1992

Authors and Affiliations

  • Tadao Manabe
    • 1
  • Tetsuya Hirano
    • 1
  • Katsuhiro Imanishi
    • 1
  • Katsuhiro Ando
    • 1
  • Fumiaki Yotsumoto
    • 1
  • Takayoshi Tobe
    • 1
  1. 1.First Department of Surgery, Faculty of MedicineKyoto UniversitySakyokuJapan

Personalised recommendations