Advertisement

Journal of Genetics

, 78:87 | Cite as

Drosophila melanogaster chemosensory and muscle development: Identification and properties of a novel allele ofscalloped and of a new locus, SG18.1, in a Gal4 enhancer trap screen

  • B. V. Shyamala
  • A. Chopra
Article

Abstract

Our primary interest is to probe into the genetic and molecular mechanisms underlying the development of the chemosensory and neuromuscular systems inDrosophila melanogaster. We have generated and characterized 40 Gal4 enhancer trap lines with P-Gal4 insertion as an attempt to identify genes with a likely role in the development and differentiation of chemosensory and neuromuscular tissues, and at the same time to obtain Gal4 drivers that would facilitate targeted ectopic expression of genes in these tissues. Insertion strain SG18.1 has reporter gene activity in major olfactory components of the adult fly and in their presumptive areas in the imaginal discs. SG29.1 has an insertion in thescalloped gene and has been useful in understanding genetic interactions that pattern the wing and in defining the role ofscalloped in muscle development in flies.

Keywords

Gal4 enhancer trap system chemosensory organs flight muscles Drosophila melanogaster 

References

  1. Anand A., Fernandes J., Arunan M. C, Bhosekar S., Chopra A., Dedhia N., Sequiera K., Hasan G., Palazzolo M.J., Vijay Raghavan K. and Rodrigues V. 1990Drosophila “enhancertrap” transposants: Gene expression in chemosensory and motor pathways and identification of mutants affected in smell and taste ability.J. Genet. 69, 151–168.CrossRefGoogle Scholar
  2. Ashburner M. 1989Drosophila: a laboratory handbook. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.Google Scholar
  3. Bate M. 1993 The mesoderm and its derivatives. InThe development of Drosophila melanogaster (ed. M. Bate and A. Martinez Arias), pp. 1013–1090. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.Google Scholar
  4. Bellen H. J., O’Kane C. J., Wilson C., Grossniklaus U., Pearson R. K. and Gehring W. J. 1989 P-element mediated enhancer detection: a versatile method to study development inDrosophila.Genes Dev. 3, 1288–1300.PubMedCrossRefGoogle Scholar
  5. Bier E., Vaessin H., Shepherd S., Lee K., McCall K., Barbel S., Ackerman L., Caretto R., Uemura T., Grell E., Jan L. Y. and Jan Y. N. 1989 Searching for pattern and mutation inDrosophila genome with a P-lacZ vector.Genes Dev. 3, 1273–1287.PubMedCrossRefGoogle Scholar
  6. Brand A. H. and Perrimon N. 1993 Targeted gene expression as a means of altering cell fates and generating dominant phenotypes.Development 118, 401–415.PubMedGoogle Scholar
  7. Campbell S. D. 1990 Molecular and genetic analysis ofscalloped gene inDrosophila melanogaster. Ph.D. thesis, University of Connecticut, Storrs, USA.Google Scholar
  8. Campbell S. D., Duttaroy A., Katzen A. L. and Chovnick A. 1991 Cloning and characterization of thescalloped gene ofDrosophila melanogaster.Genetics 127, 367–380.PubMedGoogle Scholar
  9. Campbell S. D., Inamdar M., Rodrigues V., Vijayraghavan K., Palazzolo M. and Chovnick A. 1992 Thescalloped gene encodes a novel, evolutionarily conserved transcription factor required for sensory organ differentiation inDrosophila.Genes Dev. 6, 367–379.PubMedCrossRefGoogle Scholar
  10. Campuzano S. and Modolell J. 1992 Patterning in theDrosophila nervous system: Theachaete-scute gene complex.Trends Genet. 8, 202–208.PubMedGoogle Scholar
  11. Cohen S. M. 1993 Imaginal disc development. InThe development of Drosophila melanogaster (ed. M. Bate and A. Martinez Arias), pp. 747–842. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.Google Scholar
  12. Cooley L., Kelley R. and Spradling A. 1988 Insertional mutagenesis of theDrosophila genome with single P-elements.Science 239, 1121–1128.PubMedCrossRefGoogle Scholar
  13. Daniels S. B., McCarron M., Love C. and Chovnick A. 1985 Dysgenesis induced instability ofrosy locus transformation inDrosophila melanogaster. analysis of excision events and the selective recovery of control element deletions.Genetics 109, 95–117.PubMedGoogle Scholar
  14. Deshapande N., Chopra A., Rangarajan A., Shashidhara L. S., Rodrigues V. and Krishna S. 1997 The human transcription enhancer factor-1, TEF-1, can substitute forDrosophila scalloped during wingblade development.J. Biol. Chem. 272, 10664–10668.CrossRefGoogle Scholar
  15. Dickson B. and Hafen E. 1993 Genetic dissection of eye development inDrosophila. InThe development of Drosophila melanogaster (ed. M. Bate and A. Martinez Arias), pp. 1327–1362. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.Google Scholar
  16. Falk R., Bleiser-Avivi N. and Atidia J. 1976 Labellar taste organs ofDrosophila melanogaster.J. Morphol. 150, 327–351.CrossRefGoogle Scholar
  17. Fernandes J., Bate M. and VijayRaghavan K. 1991 The development of the indirect flight muscles ofDrosophila.Development 113, 67–77.PubMedGoogle Scholar
  18. Fischer J. A., Giniger E., Maniatis T. and Ptashne M. 1988 Gal4 activates transcription inDrosophila.Nature 332, 853–865.PubMedCrossRefGoogle Scholar
  19. Grossniklaus U., Bellen H. J., Wilson C. and Gehring W. 1989 P-element mediated enhancer detection applied to the study of oogenesis inDrosophila.Development 107, 189–200.PubMedGoogle Scholar
  20. Gruneberg H. 1929 Ein Beitrag zur Kenntis der Rontgenmutationen des X-chromosoms vonDrosophila melanogaster.Biol. Zentralbl. 49, 680–694.Google Scholar
  21. Hartenstein V. and Posakony J. W. 1989 Development of adult sensilla on the wing and notum ofDrosophila melanogaster.Development 107, 389–405.PubMedGoogle Scholar
  22. Holland P., Ingham P. and Krauss S. 1992 Development and evolution. Mice and flies head to head.Nature 358, 627–628.PubMedCrossRefGoogle Scholar
  23. Inamdar M. 1994 Molecular and neurogenetic studies on the mechanism of chemoreception inDrosophila melanogaster: Analysis of thescalloped locus. Ph.D. thesis, University of Bombay, Bombay, India.Google Scholar
  24. Inamdar M., Vijayraghavan K. and Rodrigues V. 1993 TheDrosophila homolog of the human transcription factor TEF1,scalloped, is essential for normal taste behavior.J. Neurogenet. 9, 123–139.PubMedCrossRefGoogle Scholar
  25. Ishiji T., Lace M. J., Parkkinen S., Anderson R. D., Haugen T. H., Cripe T. P., Xiao J. H., Davidson L., Chambon P. and Turek L. P. 1992 Transcriptional enhancer factor (TEF-1) and its cell specific co-activator activate human papilloma virus-16 E6 and E7 oncogene transcription in keratinocytes and cervical carcinoma cells.EMBO J. 11, 2271–2281.PubMedGoogle Scholar
  26. James A. A. and Bryant P. J. 1981 Mutations causing pattern deficiencies and duplications in the imaginal wing disk ofDrosophila melanogaster.Dev. Biol. 85, 39–54.PubMedCrossRefGoogle Scholar
  27. Jarman A. P., Grell E. H., Ackerman L. Y. and Jan Y. N. 1994atonal is the proneural gene forDrosophila photoreceptors.Nature 369, 398–400.PubMedCrossRefGoogle Scholar
  28. Lindsley D. L. and Zimm G. G. 1992The genome of Drosophila melanogaster. Academic Press, New York.Google Scholar
  29. Nayak S. V. and Singh R. N. 1983 Sensilla on the tarsal segments and mouth parts of adultDrosophila melanogaster Meigen (Diptera: Drosophilidae).Int. J. Insect Morphol. Embryol. 12, 115–129.Google Scholar
  30. O’Kane C. J. and Gehring W.J. 1987 Detectionin situ of genomic elements inDrosophila.Proc. Natl. Acad. Sci. USA 84, 9123–9127.PubMedCrossRefGoogle Scholar
  31. Ray K. and Rodrigues V. 1995 Cellular events during development of the olfactory sense organs inDrosophila melanogaster.Dev. Biol. 167, 426–438.PubMedCrossRefGoogle Scholar
  32. Reddy G. V., Gupta B., Ray K. and Rodrigues V. 1997 Development of theDrosophila sense organs utilizes cell-cell interactions as well as lineage.Development 124, 703–712.PubMedGoogle Scholar
  33. Rodriguez I., Hernandez R., Modolell J. and Ruiz-Gomez M. 1990 Competence to develop sensory organs is temporally and spatially regulated inDrosophila epidermal primordia.EMBO J. 9, 3583–3592.PubMedGoogle Scholar
  34. Roy S., Shashidhara L. S. and VijayRaghavan K. 1997 Muscles in theDrosophila second thoracic segement are patterned independently of autonomous homeotic gene function.Curr. Biol. 7, 222–227.PubMedCrossRefGoogle Scholar
  35. Scott M. P. 1994 Intimations of a creature.Cell 79, 1121–1124.PubMedCrossRefGoogle Scholar
  36. Simpson P., Lawrence P. A. and Maschat F. 1981 Clonal analysis of two wing scalloping mutants ofDrosophila.Dev. Biol. 84, 206–211.PubMedCrossRefGoogle Scholar
  37. Venkatesh S. and Singh R. N. 1984 Sensilla on the third antennal segment ofDrosophila melanogaster Meigen (Diptera: Drosophilidae).Int. J. Insect Morphol. Embryol. 13, 51–63.CrossRefGoogle Scholar
  38. VijayRaghavan K., Crosby M. A., Mathers P. H. and Meyerowitz E. M. 1986 Sequences sufficient for correct regulation ofSgs-3 lie close to or within the gene.EMBO J. 5, 3321–3326.Google Scholar
  39. VijayRaghavan K., Palazzolo M. J. and Rodrigues V. 1991 TheDrosophila nervous system as a model for analysing gene expression in complex organisms.Curr. Sci. 60, 562–569.Google Scholar
  40. Wilson C, Pearson R. K., Bellen H., O’Kane C. J., Grossniklaus U. and Gehring W. J. 1989 P-element mediated enhancer detection: An efficient method for isolating and characterizing developmentally regulated genes inDrosophila.Genes Dev. 3, 1301–1313.PubMedCrossRefGoogle Scholar
  41. Xiao J. H., Davidson I., Matthes H., Gamier J. M. and Chambon P. 1991 Cloning, expression and transcriptional properties of the human enhancer factor TEF-1.Cell 65, 551–568.PubMedCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1999

Authors and Affiliations

  1. 1.Department of Studies in ZoologyUniversity of MysoreManasagangotri, MysoreIndia
  2. 2.National Centre for Biological SciencesTata Institute of Fundamental ResearchGKVK campus, BangaloreIndia
  3. 3.Molecular Biology UnitTata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations