International Journal of Pancreatology

, Volume 10, Issue 1, pp 1–8 | Cite as

Perspectives of CCK antagonists in pancreatic research

Part II. Experimental studies
  • Tamás Takács
  • Ákos Pap


In this article, the effects of different classes of cholecystokinin (CCK) receptor antagonists in CCK-related physiological processes of the pancreas have been discussed. Both glutaramic acid derivatives and natural (benzodiazepine) analogs are potent, competitive antagonists of peripheral CCK receptors. These compounds thus provide a powerful tool for investigating the physiological and pharmacological actions of CCK in the gastrointestinal system, and have already clarified the role of CCK in pancreatic secretion and trophism or growth.

Key Words

Cholecystokinin (CCK) CCK antagonists pancreatic secretion and growth feedback regulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ivy AC, Oldberg E. A hormone mechanism of gallbladder contraction and evacuation. Am. J. Physiol. 1928; 86: 599–613.Google Scholar
  2. 2.
    Mutt V, Jorpes JE, Toczko K. Further purification of cholecystokinin and pancreozymin. Acta Chem. Scand. 1964; 18: 2408–2410.CrossRefGoogle Scholar
  3. 3.
    Jorpes JE, Mutt V. Cholecystokinin and pancreozymin one single hormone? Acta Physiol. Scand. 1966; 66: 196–202.PubMedGoogle Scholar
  4. 4.
    Go VLW. The physiology of cholecystokinin. In:Gut Hormones. Bloom SR, ed., Churchhill Livingstone 1978; pp. 203-208.Google Scholar
  5. 5.
    Cantor P. Cholecystokinin in plasma. Digestion 1989; 42: 181–201.PubMedGoogle Scholar
  6. 6.
    Rehfeld JF. Immunochemical studies on cholecystokinin II. Distribution and molecular heterogeneity in the central nervous system and small intestine of man and hog. J. Biol. Chem. 1978; 253: 4022–4030.PubMedGoogle Scholar
  7. 7.
    Eng J, Shiina Y, Strauss. Post-translational processing of cholecystokinin in pig brain and gut. Proc. Natl. Acad. Sci. USA 1982; 79: 6060–6064.PubMedCrossRefGoogle Scholar
  8. 8.
    Sakamoto C, Williams JA, Goldfine ID. Brain CCK receptors are structurally distinct from pancreas CCK receptors. Biochem. Biophys. Res. Commun. 1984; 124: 497–502.PubMedCrossRefGoogle Scholar
  9. 9.
    Williams JA. Cholecystokinin: a hormone and a neurotransmitter. Biomed. Res. 1982; 3: 107–121.Google Scholar
  10. 10.
    Makovecz M, Bani M, Chiste R, Revel R, Rovati LC, Rovati LA. Differentiation of central and peripheral cholecystokinin receptors by new glutaramic acid derivatives with cholecystokinin antagonistic activity. Arzneim Forsch Drug. Res. 1986; 36: 98–102.Google Scholar
  11. 11.
    Green GM, Lyman RL. Feedback regulation of pancreatic enzyme secretion as a mechanism for trypsin-induced hypersecretion in rats. Proc. Soc. Exp. Biol. Med. 1972; 19: 812–819.Google Scholar
  12. 12.
    Ihse I, Lilja P, Lundquist I. Trypsin as a regulator of pancreatic secretion in pig. Scand. J. Gastroenterol. 1979; 13: 873–880.CrossRefGoogle Scholar
  13. 13.
    Fölsch UR, Cantor P, Wilms HM, Schafmayer A, Becker HD, Creutzfeldt W. Role of cholecystokinin in the negative feedback control of pancreatic enzyme secretion in conscious rats. Gastronterology 1987; 92: 449–458.Google Scholar
  14. 14.
    Louie DS, May D, Miller P. Cholecystokinin mediates feedback regulation of pancreatic enzyme secretion in rats. Am. J. Physiol. 1986; 250: G252-G259.PubMedGoogle Scholar
  15. 15.
    Liddle RA, Goldfine ID, Williams JA. Bioassay of cholecystokinin in rats effect of food, trypsin inhibitor and alcohol. Gastroenterology 1984; 87: 542–549.PubMedGoogle Scholar
  16. 16.
    Shiratori K, Chen YF, Chey WY, Lee KY, Chang TM. Mechanism of increased exocrine pancreatic secretion in pancreatic juice diverted rats. Gastroenterology 1986; 91: 1171–1178.PubMedGoogle Scholar
  17. 17.
    Löser C, Folsch UR, Mustorph D, Cantor P, Wunderlich U, Creutzfeldt W. Pancreatic polyamine concentrations and cholecystokinin plasma levels in rats after feeding raw or heat-inactivated soybean flour. Pancreas 1988; 3: 285–291.PubMedGoogle Scholar
  18. 18.
    Owyang C, Louie DS, Tatum D. Feedback regulation of pancreatic enzyme secretion. J. Clin. Invest. 1986; 77: 2042–2047.PubMedCrossRefGoogle Scholar
  19. 19.
    Slaff J, Wolfe MM, Toskes PP. Elevated fasting cholecystokinin levels in pancreatic exocrine impairment: evidence to support feedback regulation. J. Lab. Clin. Med. 1985; 105: 282–285.PubMedGoogle Scholar
  20. 20.
    Krawisz BR, Miller LJ, DiMagno EP. In the absence of nutrients, pancreatic-biliary secretions in the jejunum do not exert feedback control of human pancreatic or gastric function. J. Lab. Clin. Med. 1980; 95: 13–18.PubMedGoogle Scholar
  21. 21.
    Hotz J, Ho SB, Go VLW. Short-term inhibition of duodenal tryptic activity does not affect human pancreatic, biliary or gastric function. J. Lab. Clin. Med. 1983; 101: 488–495.PubMedGoogle Scholar
  22. 22.
    Mainz DL, Black O, Webster PD. Hormonal control of pancreatic growth. J. Clin. Invest. 1973; 52: 2300–2304.PubMedCrossRefGoogle Scholar
  23. 23.
    Balas D, Senegas Balas F, Pradayrol L. Long-term comparative effect of cholecystokinin and gastrin on mouse stomach, antrum, intestine, and exocrine pancreas. Am. J. Anat. 1985; 174: 27–43.PubMedCrossRefGoogle Scholar
  24. 24.
    Githens S. Differentiation and development of the exocrine pancreas in animals. In:The Exocrine Pancreas. VLW Go, ed., New York, Raven, 1986; p. 27.Google Scholar
  25. 25.
    Peikin SR, Costenbader CL, Gardner JD. Actions of derivatives of cyclic nucleotides on dispersed acini from guinea pig pancreas. Discovery of a competitive antagonist of the action of cholecystokinin. J. Biol. Chem. 1979; 254: 5321–5327.PubMedGoogle Scholar
  26. 26.
    Spanarkel M, Martinez J, Briet C, Jensen TJ, Gardner JD. ChoIecystokinin-27-32-amide. A member of a new class of cholecystokinin receptor antagonists. J. Biol. Chem. 1983; 258: 6746–6749.PubMedGoogle Scholar
  27. 27.
    Hahne WF, Jensen RT, Lemp GF, Gardner JD. Proglumide and benzotript. Members of different class of cholecystokinin antagonists. Proc. Natl. Acad. Sci. USA 1981; 78: 6304–6308.PubMedCrossRefGoogle Scholar
  28. 28.
    Makovecz FR, Chiste M, Bani MA, Pacini J, Setnikar I, Rovati LA. New glutaramic acid derivatives with potent competitive antagonistic activity. Arzeneim Forsch Drug Res. 1985; 35: 1048–1051.Google Scholar
  29. 29.
    Chang RSL, Lotti VJ, Monaghan RL, Birnbaum J, Stapely EO, Goetz MA, AlbersSchonberg G, Patchett AA, Liesch JM, Hensens OD, Springer JP. A potent nonpeptide cholecystokinin antagonist selective for peripheral tissue isolated from Aspergillus alliaceus. Science 1985; 230: 177–179.PubMedCrossRefGoogle Scholar
  30. 30.
    Evans BE, Bock MG, Rittle KE, DiPardo RM, Whitter WL, Veber DF, Anderson PS, Freidinger RM. Design a potent, orally effective, nonpeptidal antagonists of the peptide hormone cholecystokinin. Proc. Natl. Acad. Sci. USA 1986; 83: 4918–4922.PubMedCrossRefGoogle Scholar
  31. 31.
    Maton PN, Jensen RT, Gardner JD. Cholecystokinin antagonists. Hormon Metabol. Res. 1986; 18: 2–9.CrossRefGoogle Scholar
  32. 32.
    Gardner JD, Jensen RT. Cholecystokinin receptor antagonists. Am. J. Physiol. 1984; 246: G471-G476.PubMedGoogle Scholar
  33. 33.
    Loewe CJ, Grider JR, Gardiner J, Vlahcevic ZR. Selective inhibition of pentagastrin-and cholecystokinin-stimulated exocrine secretion by proglumide. Gastroenterology 1985; 89: 746–751.PubMedGoogle Scholar
  34. 34.
    Takács T, Nagy I, Pap Á, Varró V. The anti-CCK effect of glutaramic acid derivatives in anesthetized and conscious rats. Pancreas 1988; 4: 465–470.Google Scholar
  35. 35.
    Fried M, Beglinger C, Kochler E, Whitehouse I, Varga L, Gyr K. Effect of proglumide, a cholecystokinin receptor antagonist, on caerulein-stimulated pancreatic polypeptide release in the dog. Regul. Pept. 1984; 8: 117–122.PubMedCrossRefGoogle Scholar
  36. 36.
    Niederau M, Niederau C, Strohmeyer G, Grendell JH. Comparative effects of CCK receptor antagonists on rat pancreatic secretion in vivo. Am. J. Physiol. 1989; 256: G150-G157.PubMedGoogle Scholar
  37. 37.
    Fölsch UR, Hagemann G, Wilms H. Effect of a potent CCK-receptor antagonist (CR 1392) on basal and stimulated pancreatic exocrine secretion. Digestion 1986; 35: 39.Google Scholar
  38. 38.
    Hildebrand P, Beglinger C, Köhler E, Setnikar I, Gyr K. Biological effects of a proglumide derivative as cholecystokinin antagonist in conscious dogs. Reg. Peptides 1987; 18: 213–220.CrossRefGoogle Scholar
  39. 39.
    Shiratori K, Shimizu K, Watanabe S, Takeuchi T, Moriyoshi Y. Effect of CCK antagonists CR 1409 and CR 1505 on rat pancreatic exocrine secretion in vivo. Pancreas 1989; 4: 744–750.PubMedGoogle Scholar
  40. 40.
    Takács T, Nagy I, Pap Á, Varró V. The effect of CR 1409, a potent CCK receptor antagonist, on basal and stimulated pancreatic secretion in rat. Pancreas 1990; 5: 60–64.PubMedGoogle Scholar
  41. 41.
    Van den Brink FG. General theroy of drug-receptor interactions. Drug-receptor inter-action models. Calculation of drug parameters. In:Handbook of Experimental Phar-macology, vol. 47, Heffter-Heubner, ed., New York, Springer-Verlag 1977, pp. 169–254.Google Scholar
  42. 42.
    Miyasaka K, Kurosava H, Kitani K. Proglumide stimulates basal pancreatic secretion in the conscious rat. Digestion 1987; 37: 135–143.PubMedGoogle Scholar
  43. 43.
    Pap Á, Lechene P, Varró V. Exogenous and endogenous stimulations during different phases of pancreatic secretion in conscious rats. Pflügers Arch. 1979; 383: 19–27.PubMedCrossRefGoogle Scholar
  44. 44.
    Hosotani R, Chowdhury P, McKay D, Rayford PL. Effect of L364718, a new CCK antagonist, on amylase secretion in isolated rat pancreatic acini. Pancreas 1988; 3: 95–98.PubMedCrossRefGoogle Scholar
  45. 45.
    Lotti VJ, Cerino DJ, Kling PJ, Chang RSL. A new simple mouse model for the in vivo evaluation of cholecystokinin (CCK) antagonists: Comparative potencies and durations of action of nonpeptide antagonists.Life Sci. 1986; 39: 1631–1638.PubMedCrossRefGoogle Scholar
  46. 46.
    Pendleton RG, Bendesky RJ, Schaffer L, Nolan TE, Gould RJ, Clineschmidt BV. Roles of endogenous cholecystokinin in biliary, pancreatic and gastric function: studies with L-364,718, a specific cholecystokinin receptor antagonist. J. Pharm. Exp. Ther. 1987; 241: 110–116.Google Scholar
  47. 47.
    Hosotani R, Chowdhury P, McKay D, Rayford PL. Effect of L364718, a new CCK receptor antagonist, on pancreatic secretion in conscious dogs. Gastroenterology 1987; 92: 1441.Google Scholar
  48. 48.
    O’Rourke M, Reildelberger D, Solomon TE. Effect of CCK antagonist L 364718 on meal-induced pancreatic secretion in Rats. Am. J. Phys. 1990; 258: G179-G184.Google Scholar
  49. 49.
    Louie DS, Liang JP, Owyang C. Characterization of a new CCK antagonist, L364,718: in vitro and in vivo studies. Am. J. Physiol. 1988; 255: G261-G266.PubMedGoogle Scholar
  50. 50.
    Takács T, Nagy I, Pap Á. The effect of L-364718 (L-18), a cholecystokinin receptor antagonist, on pancreatic secretion and growth in rat. Pancreas 1989; 4: 644.Google Scholar
  51. 51.
    Yamaguchi T, Tabata K, Johnson LR. Effect of proglumide on rat pancreatic growth. Am. J. Physiol. 1985; 249: 294–298.Google Scholar
  52. 52.
    Glasbrenner B, Malfertheiner P, Büchler M, Brandle F, Ditschuneit H. Dose-dependent effects of chronic CR 1409 administration on the rat exocrine pancreas. Digestion 1988; 40: 82.CrossRefGoogle Scholar
  53. 53.
    Takács T, Nagy I, Pap Á, and Varró V. The effect of long-term administration of lorglu-mide (CR 1409) on rat pancreatic growth and enzyme composition. Pancreas 1990; 5: 606–610.PubMedGoogle Scholar
  54. 54.
    Wisner JR, McLaughlin RE, Rich KA, Ozawa S, Renner IG. Effects of L-364,718, a new cholecystokinin receptor antagonist, on camostate-induced growth of the rat pancreas. Gastroenterology 1988; 94: 109–113.PubMedGoogle Scholar
  55. 55.
    Schmidt WE, Choudhury AR, Siegel EG, Löser C, Conlon JM, Fölsch UR, Creutzfeldt W. CCK-antagonist L-364,718 influence on rat pancreatic growth induced by caerulein and bombesin-like peptides. Reg. Pept. 1989; 24: 67–79.CrossRefGoogle Scholar
  56. 56.
    Takács T, Nagy I, Pap Á, Varró V. Anti-cholecystokinin effect of glutaramic acid deriva-tives in anesthetized and conscious rats. Digestion 1986; 35: 56.Google Scholar
  57. 57.
    Shin S, Omachi H, Niikawa J, Yoshida H, Hirata A, Funamoti H, Taguchi S, Hatta Y. The role of CCK in rat pancreatic regeneration. Pancreas 1988; 3: 618.Google Scholar
  58. 58.
    Boros L, Pap Á, Takács T, Nagy I, Varró V. CCK-8 accelerates, the CCK-antagonist CR 1409 inhibits pancreatic regeneration after resection in rat. Digestion 1988; 40: 71 (A11).Google Scholar
  59. 59.
    Zucker KA, Adrian TE, Bilchik AJ, Modlin IM. Effects of the CCK receptor antagonist L364,718 on pancreatic growth in adult and developing animals. Am. J. Physiol. 1989; 257: G511-G516.PubMedGoogle Scholar
  60. 60.
    Hosotani R, Chowdhury D, McKay, Rayford PL. Mechanism by which L364718 regu-lates biological actions of CCK on pancreas. Gastroenterology 1988; 94: A193.Google Scholar
  61. 61.
    Jansen JBMJ, de Jong AJL, Lamers CBHM. The cholecystokinin receptor antagonist CR 1409 increases plasma cholecystokinin in rats. Reg. Pept. 1989; 24: 209–213.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1991

Authors and Affiliations

  • Tamás Takács
    • 1
  • Ákos Pap
    • 1
  1. 1.First Department of MedicineAlbert Szent-Györgyi Medical UniversitySzegedHungary

Personalised recommendations