Skip to main content
Log in

Superoxide dismutase in low-dose-streptozocin-treated mice

A dynamic time-course study

  • Published:
International journal of pancreatology Aims and scope Submit manuscript

Summary

Superoxide dismutase (SOD) is a free-radical scavenger present in B cells. It is thought to be responsible for protection against the autoimmune processes that characterize type I diabetes mellitus. Streptozocin (STZ) has been used as a low-dose treatment (LDS) to induce diabetes in animal models.

The aim of this study was to follow the islet SOD levels in a day-to-day study after an LDS treatment with STZ, 40 mg/kg body wt/d in C57BL6/J mice. Results reveal a progressive SOD decrease in pancreatic islets with increasing periods from the LDS treatment. This SOD decrease starts from the end of the STZ administration (d 5). In addition, it was noticed that glycemia starts to rise when SOD values have already reached their lowest levels. This indicates that a reduction of free-radical defense is a prerequisite for further cellular injuries. Furthermore, a difference was noticed between males and females: only 40% of female mice underwent a SOD decrement and an increase in glycemia, indicating an androgendependent mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asayama K, English D, Slonim AE, and Burr IM. Chemioluminescence as an index of drug-induced free radical production in pancreatic islets. Diabetes 1984; 33: 160–163.

    Article  PubMed  CAS  Google Scholar 

  2. Ruddle NH. Tumor necrosis factor and related cytotoxins. Immunol. Today 1987; 8: 129, 130.

    Article  Google Scholar 

  3. Asayama K, Kooy NW, and Burr IM. Effect of vitamin E deficiency and selenium deficiency on insulin secretory reserve and free radical scavenging systems in islets: decrease of islet manganosuperoxide dismutase. J. Lab. Clin. Med. 1986; 107: 459–464.

    PubMed  CAS  Google Scholar 

  4. Pisanti FA, Frascatore S, Papaccio G. Superoxide dismutase activity in the BB rat: a dynamic time-course study. Life Sci. 1988; 43: 1625–1632.

    Article  PubMed  CAS  Google Scholar 

  5. Malaisse WJ, Malaisse-Lagae F, Sener A, and Pipeleers DG. Determinants of the selective toxicity of alloxan to the pancreatic B cell. Proc. Natl. Acad. Sci. 1982; 79: 927–930.

    Article  PubMed  CAS  Google Scholar 

  6. Crouch RK, Gandy SE, Kimsey G, Galbraith RA, Galbraith GMP, and Buse MG. The inhibition of islet superoxide dismutase by diabetogenic drugs. Diabetes 1981; 30: 235–241

    PubMed  CAS  Google Scholar 

  7. Robbins MJ, Sharp RA, Slonim AE, and Burr IM. Protection against streptozocininduced diabetes by superoxide-dismutase. Diabetologia 1980; 18: 55–58.

    Article  PubMed  CAS  Google Scholar 

  8. Gandy SE, Buse MG, and Crouch RK. Protective role of superoxide dismutase against diabetogenic drugs. J. Clin. Invest. 1982; 70: 650–658.

    Article  PubMed  CAS  Google Scholar 

  9. Fridovich I. Superoxide dismutase. Annu. Rev. Biochem. 1975; 44: 147–159.

    Article  PubMed  CAS  Google Scholar 

  10. Papaccio G, Pisanti FA, and Frascatore S. Acetyl-homocysteine-thiolactone induced increased superoxide-dismutase counteracts the effects of subdiabetogenic doses of streptozocin. Diabetes 1986; 35: 470–474.

    Article  PubMed  CAS  Google Scholar 

  11. Sumoski W, Baquerizo H, and Rabinovitch A. Oxygen free radical scavengers protect rat islet cells from damage by cytokines. Diabetologia 1989; 3: 792–796.

    Google Scholar 

  12. Nukatsuka N, Sakurai H, Yoshimura Y, Nishida M, and Kawada J. Enhancement by Streptozocin of O2-radical generation by the xanthine oxydase system of pancreatic B-cells. FEBS Lett 1988; 239: 295–298.

    Article  PubMed  CAS  Google Scholar 

  13. Papaccio G. Prevention of low dose streptozocin induced diabetes by acetyl-homocysteinethiolactone. Diab. Res. 1991, in press.

  14. Like AA, and Rossini AA. Streptozocin induced pancreatic insulitis: new model of diabetes mellitus. Science 1976; 133: 415–417.

    Article  Google Scholar 

  15. Papaccio G and Mezzogiorno V. Morphological aspects of glucagon and somatostatin islet cells in diabetic Bio Breeding and low dose streptozocin treated Wistar rats. Pancreas 1989; 4: 289–294.

    Article  PubMed  CAS  Google Scholar 

  16. Lacy PE and Kostianowski M. Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes 1967; 16: 35–39.

    PubMed  CAS  Google Scholar 

  17. Grankvist K, Marklund SL, and Taljedal IB. CuZn-superoxide dismustase, Mn-superoxide dismutase, catalase and glutathione peroxidase in pancreatic islets and other tissues in the mouse. Biochem. J. 1981; 199: 393–398.

    PubMed  CAS  Google Scholar 

  18. Lowry OH, Rosebrough NJ, Farr AL, and Randall RJ. Protein measurement with the Folin Phenol reagent. J. Biol. Chem. 1951; 193: 265–275.

    PubMed  CAS  Google Scholar 

  19. Marklund S and Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 1974; 47: 469–474.

    Article  PubMed  CAS  Google Scholar 

  20. Rossini AA, Williams RM, Appel MC, and Like AA. Sex differences in the multiple-dose streptozocin model of diabetes. Endocrinology 1978; 103: 1518–1520.

    Article  PubMed  CAS  Google Scholar 

  21. Gutteridge JMC. Superoxide dismutase and free radicals in clinical chemistry. Ann. Clin. Biochem. 1976; 13: 393–398.

    PubMed  CAS  Google Scholar 

  22. Nomikos IN, Wang Y, and Lafferty KJ. Involvement of O2 radicals in ‘autoimmune’ diabetes. Immunol. Cell Biol. 1989; 67: 85–87.

    Article  PubMed  CAS  Google Scholar 

  23. Mendola J, Wright JR, and Lacy PE. Oxygen free-radical scavengers and immune destruction of murine islets in allograft rejection and multiple low-dose streptozocininduced insulitis. Diabetes 1989; 38: 379–385.

    Article  PubMed  CAS  Google Scholar 

  24. Kantwerk G, Cobbold S, Waldman H, Kolb H. L3T4 and Lyt-2 T cells are both involved in the generation of low-dose-streptozocin induced diabetes in mice. Clin. Exp. Immunol. 1986; 70: 585–592.

    Google Scholar 

  25. Fantose JC and Ward PA. Role of oxygen-derived free radicals and metabolites in leukocyte-dependent inflammatory reactions. Am. J. Pathol. 1982; 107: 395–418.

    Google Scholar 

  26. Mandrup-Poulsen T, Bendtzen K, Nerup J, Dinarello CA, Svenson M, and Nielsen JH. Affinity-purified human interleukin-1 is cytotoxic to isolated islets of Langerhans. Diabetologia 1986; 29: 63–67.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papaccio, G., Latronico, M., Frascatore, S. et al. Superoxide dismutase in low-dose-streptozocin-treated mice. Int J Pancreatol 10, 253–260 (1991). https://doi.org/10.1007/BF02924163

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02924163

Key Words

Navigation