Journal of Genetics

, Volume 65, Issue 1–2, pp 37–44 | Cite as

Transformation ofBrassica juncea byAgrobacterium tumefaciens harbouring plasmid pTiT37 and its ‘rooty’ mutant pTiT37.14a/a

  • Helena Mathews
  • P S Rao
  • C R Bhatia


Indian mustard (Brassica juncea Linn., Czern and Coss) plants were inoculated withAgrobacterium tumefaciens strain A208 harbouring either plasmid pTiT37 or pTiT37.14a/a. The latter carries an insertion at the ‘rooty’ locus (gene 4 orcyt) of the T-DNA governing cytokinin biosynthesis. The tumours induced by pTiT37.14a/a were small and formed many roots. Forin vitro culture, these transformed cells required supplementation of the basal medium with IAA and kinetin in the initial stages though after six sub-cultures they were also hormone autotrophic.In vitro cultures showed profuse rooting like the inplanta tumours. Unlike transformed tobacco and carrot cells,Brassica juncea cells transformed by pTiT37.14a/a could not be induced to differentiate into shoots. In contrast, the cells transformed by the wild type pTiT37 were hormone autotrophic and occasionally differentiated into shoots but could not be induced to produce roots. These results demonstrate how a single gene mutation affecting cytokinin biosynthesis can alter the inplanta as well as thein vitro response of a transformed cell of the same genotype.


Agrobacterium tumefaciens rooty mutant Brassica juncea regeneration Ti plasmid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akiyoshi D E, Klee H, Amasino R M, Nester E W and Gordon M P 1984 T-DNA ofAgrobacterium tutnefaciens encodes an enzyme of cytokinin biosynthesis.Proc. Natl. Acad. Sci. USA 81: 5994–98PubMedCrossRefGoogle Scholar
  2. Barry G F, Rogers S G, Fraley R T and Brand L 1984 Identification of a cloned cytokinin biosynthesis gene.Proc. Natl. Acad. Sci. USA 81: 4776–80PubMedCrossRefGoogle Scholar
  3. Barton K A, Binns A N, Matzke A J M and Chilton M D 1983 Regeneration of intact tobacco plants containing full length copies of genetically engineered T-DNA and transmission of T-DNA to R1 progeny.Cell 32: 1033–43PubMedCrossRefGoogle Scholar
  4. Bevan M V and Chilton M D 1982 T-DNA of theAgrobacterium Ti and Ri plasmids.Annu. Rev. Genet. 16: 357–384PubMedCrossRefGoogle Scholar
  5. Buchholz W G and Thomashow 1984 Comparison of T-DNA oncogene complements ofAgrobacterium tumefaciens tumor inducing plasmids with limited and wide host ranges.J. Bacteriol. 160: 319–326PubMedGoogle Scholar
  6. Chilton M D 1983 A vector for introducing new genes into plants.Sci. Am. 248(8): 51–59Google Scholar
  7. Chilton M D, Drummond M H, Merlo D J, Sciaky D, Montoya A L, Gordon M P and Nester E W 1977 Stable incorporation of plasmid DNA into higher plant cells: The molecular basis of crown gall tumorigenesis.Cell 11: 263–271PubMedCrossRefGoogle Scholar
  8. Garfinkel D J, Simpson R B, Ream L W, White F F, Gordon M P and Nester E W 1981 Genetic analysis of crown gall: Fine structure map of the T-DNA by site directed mutagenesis.Cell 27: 143–153PubMedCrossRefGoogle Scholar
  9. Hemstad P R and Reish B I 1985In vitro production of galls mduced byAgrobacterium tumefaciens andAgrobacterium rhizogenes onVitis andRubus.J. Plant Physiol. 120: 9–17Google Scholar
  10. Hoekema A, De Paler B S, Fellinger A J, Hooykaas P J J and Schilperoort R 1984 The limited host range of anAgrobacterium tumefaciens strain extended by a cytokinin gene from a wide host range T-region.EMBO J. 3: 3043–47PubMedGoogle Scholar
  11. Inze D, Follin A, Lijsebettens M V, Simoens C, Genetello C, Van Montagu M and Schell J 1984 Genetic analysis of the individual T-DNA genesof Agrobacterium tumefaciens; further evidence that two genes are involved indole-3-acetic acid synthesis.Mol. Gen. Genet. 194: 265–274CrossRefGoogle Scholar
  12. Joos H, Inze D, Caplan A, Sormann M, Van Montagu M and Schell J 1983 Genetic analysis of T-DNA transcripts in nopaline crown galls.Cell 32: 1057–67PubMedCrossRefGoogle Scholar
  13. Klee H, Montoya A, Horodysk F, Lichtenstein C, Garfinkel D, Fuller S, Flores C, Peschon J, Nester E W and Gordon M 1984 Nucleotide sequence of thetms genes of the pTiA6NC octopine Ti plasmid: Two gene products involved in plant tumorigenesis.Proc. Natl. Acad. Sci. USA 81: 1728–32PubMedCrossRefGoogle Scholar
  14. Knauf V C, Yanofsky M F, Gordon M P and Nester E W 1983 Genetic analysis of host range expression byAgrobacterium. InMolecular genetics of the bacteria-plant interactions (ed.) A Puhler (Berlin, Heidelberg: Springer Verlag) pp. 239–247Google Scholar
  15. Leemans J, Deblaere R, Willmitzer L, De Greve H, Hernalsteens J P, Van Montagu M and Schell J 1982 Genetic identification of functions of TL-DNA transcripts in octopine crown gall.EMBO J. 1: 147–152PubMedGoogle Scholar
  16. Lemmers M, Debeuckeller M, Holsters M, Zambryski P, Depicker A, Hernalsteens J P, Van Montagu M and Schell J 1980 Internal organization, boundaries and integration of Ti-plasmid DNA in nopaline crown gall tumours.J. Mot. Biol. 144: 353–376CrossRefGoogle Scholar
  17. Mathews V H, Bha.tia C R, Mitra R, Krishna T G and Rao P S 1985 Regeneration of shoots fromBrassica juncea (Linn) Czern and Coss cells transformed byAgrobacterium tumefaciens and expression of nopaline dehydrogenase genes.Plant Sci. 39: 49–54CrossRefGoogle Scholar
  18. Matzke A J M and Chilton M D 1981 Site specific insertion of genes into T-DNA of theAgrobacterium tumor inducing plasmids: An approach to genetic engineering of higher plant cells.J. Mol. Appl. Genet. 1:39–49PubMedGoogle Scholar
  19. Murashige T and Skoog F 1962 A revised medium for rapid growth and bioassays with tobacco tissue culture.Physiol. Plant. 15: 473–497CrossRefGoogle Scholar
  20. Nester E W, Gordon M P, Amasino R M and Yanofsky M F 1984 Crown gall: A molecular and physiological analysis.Annu. Rev. Plant Physiol. 35: 387–413CrossRefGoogle Scholar
  21. Ooms G, Hooykaas P J J, Moolenaar G and Schilperoort R A 1981 Crown gall plant tumours of abnormal morphology, induced byAgrobacterium tumefaciens carrying mutated octopine Ti plasmids, analysis of T-DNA functions.Gene 14: 33–50PubMedCrossRefGoogle Scholar
  22. Otten L A and Schilperoort 1978 A rapid microscale method for the detection of lysopine and nopaline dehydrogenase activities.Biochim. Biophys. Acta 526: 497–500Google Scholar
  23. Owens L 1985 Mutant T-DNA (rooty) alters morphogenetic potential of cultured soybean tumor. InAbstr. 1st Int. Congr. Plant Mol. Biol. Univ. Georgia, Athens (ed.) G A Galau (Athens: Univ. of Georgia Press) p. 109Google Scholar
  24. Ream L W, Gordon M P and Nester E W 1983 Multiple mutations in the T-region of theAgrobacterium tumefaciens tumour-inducing plasmid.Proc. Natl. Acad. Sci. USA 80: 1660–64PubMedCrossRefGoogle Scholar
  25. Schroder G, Waffenschmidt S, Weiler E W and Schroder J 1984 The T-region of Ti plasmids codes for an enzyme synthesizing indole-3-acetic acid.Eur. J. Biochem. 188: 387–391CrossRefGoogle Scholar
  26. Thomashow M F, Nutter R, Postle K, Chilton M D, Blattner F R, Powell A, Gordon M P and Nester E W 1980 Recombination between higher plant DNA and the Ti plasmid ofAgrobacterium tumefaciens.Proc. Natl. Acad. Sci. USA 77: 6448–52PubMedCrossRefGoogle Scholar
  27. Thomashow L S, Reeves S and Thomashow M F 1984 Crown gall oncogenesis: Evidence that a T-DNA gene from theAgrobacterium Ti plasmid pTiA6 encodes an enzyme that catalyzes synthesis of indoleacetic acid.Proc. Natl. Acad. Sci. USA 81: 5071–75PubMedCrossRefGoogle Scholar
  28. Thomashow M F, Hugly S, Buchholz W G and Thomashow L S 1986 Molecular basis for the auxin-independent phenotype of crown gall tumor.Science 231: 616–618PubMedCrossRefGoogle Scholar
  29. Van Onckelen H, Rudelsheim P, Inze D, Follin A, Messens E, Horemans J, Schell J, Van Montagu M and De Greef J 1985 Tobacco plants transformed with theAgrobacterium T-DNA gene / contain high amount of indole-3-acetamide.FEBS Lett. 181: 373–376CrossRefGoogle Scholar
  30. Yadav N S, Postle K, Saiki R K, Thomashow M and Chilton M D 1980 T-DNA of a crown gall teratoma is covalently joined to host plant DNA.Nature (London) 287: 458–61CrossRefGoogle Scholar
  31. Zambryski P, Holsters M, Kruger K, Depicker A, Schell J, Van Montagu M and Goodman H M 1980 Tumour DNA structure in plant cells transformed byAgrobacterium tumefaciens.Science 209: 1385–91PubMedCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1986

Authors and Affiliations

  • Helena Mathews
    • 1
  • P S Rao
    • 2
  • C R Bhatia
    • 3
  1. 1.Bio-Organic DivisionBhabha Atomic Research CentreBombayIndia
  2. 2.Bio-Organic DivisionBhabha Atomic Research CentreBombayIndia
  3. 3.Nuclear Agriculture DivisionBhabha Atomic Research CentreBombayIndia

Personalised recommendations