Advertisement

Statistische Hefte

, Volume 10, Issue 3, pp 212–222 | Cite as

An input-output model for education and manpower planning

  • M. Rutsch
Statistische Theorie
  • 65 Downloads

Keywords

Plan Period Full Employment Final Demand Educational Facility Manpower Planning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellman, R., andKalaba, R. (1965), Dynamic Programming and Modern Control Theory. Academic Preis, New York and London.Google Scholar
  2. Bénard, H. (1966), Un modèle d’affectation optimale des ressources entre l’économie et le système éducatif. Bulletin du CEPREL no. 6.Google Scholar
  3. Brody, A. (1968), Optimal and Time-Optimal Paths of the Economy. Paper presented to the Fourth International Conference on Input-Output Techniques. Geneva, January 8–12, 1968.Google Scholar
  4. Chance, W. A. (1966), Long-Term Labor Requirements and Output of the Educational System, Southern Economic Journal, 32, pp. 417–428.CrossRefGoogle Scholar
  5. Faluvegi, L. (1965), The Planning of Budgetary Expenditure on Education on the Basis of a Mathematical Model — The Method Employed in Hungary (report to the Congress of the Institut international de finances publiques, Paris 1965).Google Scholar
  6. Kantorovich, L. V. (1964), A Dynamic Model of Optimal Planning. (In: Planning and Economic-Mathematical Methods, Nauka, Moscow.) English Translation in: Mathematical Studies in Economics and Statistics in the USSR and Eastern Europe, 1, pp. 41–67.Google Scholar
  7. OECD, Directorate for Scientific Affairs (1967), Systems Analysis Techniques in Educational Planning. Reports of the Meeting of Ad Hoc Group on Efficiency in Resource Utilisation in Education, Paris, January 25–27, 1967.Google Scholar
  8. Ozaki, I. (1968), Economies of Scale and Input-Output Coefficients. Paper presented to the Fourth International Conference on Input-Output Techniques, Geneva, January 8–12, 1968.Google Scholar
  9. Polenske, K. R. (1968), Empirical Implementation of a Multiregional Input-Output Gravity Trade Model. Paper presented to the Fourth International Conference on Input-Output Techniques, Geneva, January 8–12, 1968.Google Scholar
  10. Pontryzgin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V., andMishchenko, E. F. (1962), The Mathematical Theory of Optimal Processes. Interscience, New York.Google Scholar
  11. Rutsch, M. (1961), Multiregionale Input-Output-Modelle. Statistische Hefte — Statistical Papers, 2, pp. 171–184.MATHCrossRefGoogle Scholar
  12. Stone, R. (1968), Demographic Input-Output: An Extension of Social Accounting. Paper presented to the Fourth International Conference on Input-Output Techniques, Geneva, January 8–12, 1968.Google Scholar
  13. Whittle, P. (1963), Prediction and Regulation by Linear Least-Square Methods. The English Universities Press, London.Google Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • M. Rutsch
    • 1
  1. 1.Institut für Ökonometrie und Unternehmensforschung der Universität des Saarlandes66 Saarbrücken 11

Personalised recommendations