Applied Biochemistry and Biotechnology

, Volume 28, Issue 1, pp 827–841 | Cite as

Novel Biotreatment Process for Glycol Waters

  • L. M. V. Raja
  • G. Elamvaluthy
  • R. Palaniappan
  • R. M. Krishnan
Session 4 Bioengineering Research


Propylene oxide (PO), propylene glycol (PG), and polyols are produced from propylene via propylene chlorohydrin. Effluents from these plants contain biological oxygen demand/chemical oxygen demand (BOD/COD) loads besides high chloride concentrations. The high salinity poses severe problem to adopt conventional methods like activated sludge processes. Presently, a simple, economically viable and versatile microbiological process has been developed to get more than 90% biodegradation in terms of BOD/COD, utilizing specially developedPseudomonas andAerobacter. The process can tolerate high salinity up to 10 wt% NaCl or 5 wt% CaCl2 and can withstand wide variations inpH (5.5–11.0) and temperature (15–45°C). The biodegradation of glycols involves two steps. The enzymatic conversion of glycols to carboxylic and hydroxycarboxylic acids is aided byPseudo- omonas. Further degradation to CO2 and H2O by carboxylic acid utilizingAerobacter, and possible metabolic degradative pathway of glycols are discussed. Various process parameters obtained in the lab scale (50 L bioreactor) and pilot scale (20 m3 bioreactor), and unique features of our process are also discussed.

Index Entries

Glycols epoxides glycerol biodegradation Pseudomonas Aerobacter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abele, L., Brochhagen, F. K., and Walber, U. (1984), Polyurethane Hand- book, Gunter, Oertel, ed., Hanser Publishers, Munich, Vienna, New York, 599–603.Google Scholar
  2. 2.
    Noel, R. Krieg and Holt, J. G. (1984), Bergey’s Manual of Systematic Bacteriology, Williams and Wilkins, Baltimore, MD.Google Scholar
  3. 3.
    Greenberg, A. E., Trussell, R. R., and Cleseeri, L. S., eds. (1985),Standard Methods for the Examination of Water and Waste Water. Amer. Pub. Health Assn., Washington, DC.Google Scholar
  4. 4.
    Baumann, F. J. (1974),Anal. Chem. 46, 1337.Google Scholar
  5. 5.
    Burns, E. R. and Marshall, C. (1965),Water Pollut. Control Fed. 37, 1716.Google Scholar
  6. 6.
    Cripps, J. M. and Jekins, D. A. (1964),Anal. Chem. 36, 1240.Google Scholar
  7. 7.
    Dobbs, R. A. and Williams, R. J. (1963),Anal. Chem. 35, 1064.CrossRefGoogle Scholar
  8. 8.
    Woodring, S. L. and Clifford, D. A. (1980),J. Water. Pollut. Control Fed. 60, 537.Google Scholar
  9. 9.
    Yoshitake, Tanaka, Fujii, K., Tanaka, A., and Fukui, S. (1975),J. Ferment. Technol. 53, 354–362.Google Scholar
  10. 10.
    Huff, E. and Rudhey, H. (1959),J. Biol. Chem. 234, 1060.Google Scholar
  11. 11.
    Levenspiel, O. (1969),Chemcial Reaction Engineering, Wiley Eastern, New Delhi, 150–152.Google Scholar
  12. 12.
    Atkinson, B. and Mavituna, F. (1983), Biochemical Engineering and Biotechnology Handbook, The Nature Press, USA, 620–624.Google Scholar

Copyright information

© Humana Press Inc. 1991

Authors and Affiliations

  • L. M. V. Raja
    • 1
  • G. Elamvaluthy
    • 1
  • R. Palaniappan
    • 1
  • R. M. Krishnan
    • 1
  1. 1.Centre for Research and DevelopmentSouthern Petrochemical Industries Corporation, Ltd.TuticorinIndia

Personalised recommendations