Applied Biochemistry and Biotechnology

, Volume 28, Issue 1, pp 369–375 | Cite as

Genetic transformation of xylose-fermenting yeastPichia stipitis

Scientific note
  • Nancy W. Y. Ho
  • David Petros
  • X. X. Deng
Session 2 Applied Biological Research I


A plasmid-mediated transformation system has been developed for the xylose-fermenting yeastPichia stipitis. We found that plasmid vectors containing theSaccharomyces cerevisiae 2 μ replicon and the kanamycin resistance gene (KmR) could be introduced into thePichia cells and maintained as extrachromosomal elements.Pichia transformants containing such vectors will be resistant to the antibiotic geneticin that can be inactivated by the protein product of KmR. Plasmids identical to those used for transformation can be recovered from thePichia transformants. Protocols for transformation ofP. stipitis by the CaCl2-polyethylene glycol-protoplast process or by direct electroporation of intactPichia cells have both been developed.

Index Entries

Pichia stipitis genetic transformation system electroporation Saccharomyces cerevisiae 2 μ replicon kanamycin resistance gene geneticin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jeffries, T. W. (1983),Adv. Biochem. Eng. Biotechnol. 27, 1–32.Google Scholar
  2. 2.
    Barnett, J. A. (1976),Adv. Carbohydr. Chem. Biochem. 32, 125–234.CrossRefGoogle Scholar
  3. 3.
    du Preez, J. C., Bosch, M., and Prior, B. A. (1985),Enzymol. Microb. Technol. 8, 360–364.Google Scholar
  4. 4.
    Jeffries, T. W. (1985),Trends in Biotechnology 3(8), 208–212.CrossRefGoogle Scholar
  5. 5.
    Norgard, M. V., Keem, K., and Monahan, J. J. (1978),Gene 31, 279–292.CrossRefGoogle Scholar
  6. 6.
    Hinnen, A., Hicks, J. B., and Fink, G. R. (1978),Proc. Natl. Acad. Sci. USA 75, 1929–1933.CrossRefGoogle Scholar
  7. 7.
    Gregg, J. M., Barringer, K. J., Hessler, A. Y., and Madden, K. R. (1985),Mol. Cell. Biol. 5, 3376–3385.Google Scholar
  8. 8.
    Struhl, K., Stinchcomb, D. T., Scherer, S., and David, R. W. (1979),Proc. Natl. Acad. Sci. 76, 1035.CrossRefGoogle Scholar
  9. 9.
    Devenish, R. J. and Newlon, C. S. (1982),Gene 18, 277–288.CrossRefGoogle Scholar
  10. 10.
    Wills, J. W., Lasker, B. A., Sirotkin, K., and Riggsby, W. S. (1984),J. Bacteriol. 157, 918–924.Google Scholar
  11. 11.
    Lang, B., Burger, G., Doxiadis, I., Thomas, D. Y., Banklow, W., and Kaudewitz, F. (1977),Anal. Biochem. 77, 110–121.CrossRefGoogle Scholar
  12. 12.
    Beach, D. and Nurse, P. (1981),Nature 290, 140–142.CrossRefGoogle Scholar
  13. 13.
    Ho, N. W. Y., Gao, H. C., Huang, J. J., Stevis, P. E., Chang, S. F., and Tsao, G. T. (1984),Biotechnol. Bioeng. Symp. 14, 295–300.Google Scholar
  14. 14.
    Takagi, M., Kawai, S., Chang, M. C., Shibuya, I., and Yano, K. (1986),J. Bacteriol. 167, 551–555.Google Scholar
  15. 15.
    The plasmid was a gift from J. Marmur, Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY.Google Scholar

Copyright information

© Humana Press Inc. 1991

Authors and Affiliations

  • Nancy W. Y. Ho
    • 1
  • David Petros
    • 1
  • X. X. Deng
    • 1
  1. 1.Laboratory of Renewable Resources EngineeringPurdue UniversityWest Lafayette

Personalised recommendations