Oils from Wild, Micropropagated Plants, Calli, and Suspended Cells ofEuphorbia characias L.

  • M. Fernandes-Ferreira
  • M. Salomé S. Pais
  • J. M. Novais
Session 2 Applied Biological Research I


Micropropagated Euphorbia characias plants gave higher yields of crude oil than did wild ones. Leaves of either wild and micropropagated plants contained more oil than did stems. Triterpenols, hydrocarbons, and free and esterified fatty acids are components of the crude oil produced by stems, young and mature leaves of wild and micropropagated E. characias plants, as well as by calli and suspended cells. With the exception of the free fatty acids fraction, all crude oil fractions were higher in micropropagated plants than in the wild ones. The crude oil content of leaves of either wild or micropropagated plants was higher than that of stems. However the triterpenols yields were higher in stems than in leaves, both in wild and micropropagated plants. The composition of the triterpenol fraction of the crude oil obtained from calli and suspended cells is quite different from that produced by any in vivo parent plant organ studied. Free fatty acids constitute the main fraction of the crude oil obtained from calli and suspended cells.

Index Entries

Euphorbia characias micropropagation calli suspended cells oil 


  1. 1.
    Fernandes-Ferreira, M., Novais, J. M., and Pais, M. S. S. (1990),Phytochemistry 29, 1855.CrossRefGoogle Scholar
  2. 2.
    Fernandes-Ferreira, M., Pais, M. S. S., and Novais, J. M. (1990),Biomass for Energy and Industry, 5th E. C. Conference, Grassi, G., Gosse, G., and Santos, G., eds., vol. 1, pp. 517, Elsevier, London.Google Scholar
  3. 3.
    Buchanan, R. A., Cull, I. M., Otey, F. H., and Russel, C. R. (1978),Economic Botany 32, 131–153.Google Scholar
  4. 4.
    Ng’eny-Mengech, A. and Kihumba, S. N. (1985),Energy from Biomass, 3rd E. C. Conference, Palz, W., Coombs, J., and Hall, D. O., eds., pp. 749, Elsevier, London.Google Scholar
  5. 5.
    Wiatr, S. M., (1985),Biomass 4, 59.Google Scholar
  6. 6.
    Calvin, M. (1983),Science 219, 24.CrossRefGoogle Scholar
  7. 7.
    Murashige, T. and Skoog, F. (1962),Physiol. Plantarum 15, 473.CrossRefGoogle Scholar
  8. 8.
    Fernandes-Ferreira, M., Novais, J. M., and Pais, M. S. S. (1989),Biotechnol. Lett. 4, 259.CrossRefGoogle Scholar
  9. 9.
    Nielsen, P. E., Nishimura, H., Otvos, J. W., and Calvin, M. (1977),Science 198, 942.CrossRefGoogle Scholar
  10. 10.
    Nielsen, P. E., Nishimura, H., Liang, Y., and Calvin, M. (1979),Phytochemistry 18, 103.CrossRefGoogle Scholar
  11. 11.
    Nemethy, E. K., Otvos, J. W., and Calvin, M. (1981),Pure & Appl. Chem. 53, 1101.CrossRefGoogle Scholar
  12. 12.
    Stumpf, P. K. (1987),JAOCS 64, 1641.CrossRefGoogle Scholar
  13. 13.
    Soimajarui, J. and Linko, R. R. (1979),J. Agric. Food Chem. 27, 1279.CrossRefGoogle Scholar
  14. 14.
    Hirayama, O. and Suzuki, T. (1968),Agric. Biol. Chem. 32, 549.Google Scholar
  15. 15.
    Kates, M. (1970),Adv. Lipid Res. 8, 225.Google Scholar
  16. 16.
    Matsuzaki, T., Koiwai, A, Nagao, T., Sato, F., and Yamada, Y. (1984),Agric. Biol. Chem. 48, 1699.Google Scholar
  17. 17.
    Leese, B. M. and Leech, R. M. (1976),Plant Physiol. 47, 789.CrossRefGoogle Scholar
  18. 18.
    Bahl, J., Francke, B., and Moneger, R. (1976),Planta 129, 193.CrossRefGoogle Scholar
  19. 19.
    Adams, R. P., Balandrin, M. F., Brown, K. J., Stone, G. A., and Gruel, S. M. (1986),Biomass 9, 255.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1991

Authors and Affiliations

  • M. Fernandes-Ferreira
    • 1
  • M. Salomé S. Pais
    • 2
  • J. M. Novais
    • 3
  1. 1.BiologiaUniversidade do MinhoPortugal
  2. 2.Dep. de Biologia VegetalFaculdade de Ciências de LisboaPortugal
  3. 3.Laboratório de Engenharia BioquimicaInstituto Superior Técnico, Av. Rovisco PaisPortugal

Personalised recommendations