On the distribution function of additive arithmetical functions and on some related problems

Conferenza tenuta il 31 Gennaio 1956
  • P. Erdös


Si espongono ricerche e risultati sulla classica questione della esistenza, e delle eventuali proprietà, della funzione distribuzione di una funzione additiva o moltiplicativa.

Si accenna anche ad alcune questioni connesse, quali quella della densità dei numeri abbondanti primitivi.

L’esposizione si chiude con una elencazione di problemi tuttora aperti che si possono prospettare in questo campo di ricerche.


In this paper researches and results about the existence and properties of the distribution function of an additive function are illustrated. Some associated questions are also considered; for example the density of primitive abundant numbers.

The paper ends with an enumeration of unsolved problems which can be encountered in these researches.


Distribution Function Additive Function Unsolved Problem Absolute Continuity Multiplicative Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Much of the material discussed in this paper is also found in the excellent revue article ofM. Kac,Bull. Amer. Math. Soc. 55 (1949), 641–665, see also my paper which will soon appear in the Proc. International Math. Congress of Amsterdam.MathSciNetCrossRefGoogle Scholar
  2. [2]
    Amer. Journal of Math. 61 (1939), 713–721.Google Scholar
  3. [3]
    Journal London Math. Soc. 13 (1938), 119–127. The result in question is a specia case of a result of PaulLévy.Google Scholar
  4. [4]
    Amer. Journal of Math. 61 (1939), 722–725.Google Scholar
  5. [5]
    Amer. Journal of Math. 62 (1940), 738–742.Google Scholar
  6. [6]
    Written communication.Google Scholar
  7. [7]
    Dokladi Akademii Nauk SSSR, 100 (4) (1955), 623–626.Google Scholar
  8. [8]
    Annals of Math. 47 (1946), 1–20.Google Scholar
  9. [9]
    Math. Zeitschrift, 28 (1928), 171–200. A later paper ofSchoenberg,Trans Amer. Math. Soc. 39 (1936), 315–330 contains very much more general results.Google Scholar
  10. [10]
    Berliner Sitzungsberichte (der Akademie) (1934) 830–834.Google Scholar
  11. [11]
    Journal London Math. Soc. 9 (1934), 278–282.Google Scholar
  12. [12]
    Journal London Math. Soc. 10 (1935), 49–58.Google Scholar
  13. [13]
    The proof of this result is not published.Google Scholar
  14. [14]
    Math. Annalen, 110 (1934), 336–341.Google Scholar
  15. [15]
    Bull. Amer. Math. Soc. 54 (1948), 685–692.Google Scholar
  16. [16]
    Acta Arithmetica, 2 (1936), 147–151, see alsoIndian Journal of Math. 15 (1951), 19–24.Google Scholar
  17. [17]
    A simple argument shows that if the conditiontjai is replaced bytj ≥0 the logarithmic density in question does not always exist.Google Scholar

Copyright information

© Birkhäuser-Verlag 1957

Authors and Affiliations

  • P. Erdös
    • 1
  1. 1.TechnionHaifaIsrael

Personalised recommendations