Applied Biochemistry and Biotechnology

, Volume 32, Issue 1–3, pp 111–126 | Cite as

Kinetics and activity distribution of grease coencapsulated with hemoglobin within polyamide membranes

  • M. Monshipouri
  • R. J. Neufeld


A 91.5% mass yield of urease and hemoglobin (Hb), co-encapsulated within polyamide membranes, was determined spectrophoto-metrically. The specific activity yield of microencapsulation was 84%, twofold higher than values previously reported, as a result of optimization of encapsulation conditions. The kinetic parameters and pH activity profiles of intracapsular urease were determined to be similar to those corresponding to the free enzyme. Similar activities were also observed for intact and microcapsule homogenate, indicating minimal mass transfer and diffusional limitation. The active configuration of the enzyme appears to remain intact upon microencapsulation. The application of a kinetic model for encapsulated urease further indicated that the kinetics were reaction-controlled with minimal mass transfer restrictions.

Index Entries

Urease hemoglobin microencapsulation polyamide membrane observed and specific yield 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Silman, J. H. and Katchalsky, E. (1971),Ann. Rev, Biochem. 35, 873–896.CrossRefGoogle Scholar
  2. 2.
    Gryszkiewicz, J. (1971),Folia. Biol. Parapha. 19, 119–150.Google Scholar
  3. 3.
    Chang, T. M. S. (1969),Sd. Tools 16, 33.Google Scholar
  4. 4.
    Williams, R. and Murray-Lyon, I. M. (1975),Artificial Liver Support, Pitman, London, pp. 217–249.Google Scholar
  5. 5.
    Chang, T. M. S. (1981),Artificial Liver Support, Brunner, G. and Schmidt, F. W., eds., Springer-Verlag, Berlin, pp. 26–133.Google Scholar
  6. 6.
    Chang, T. M. S. (1984),Life Supported Systems 2, 99–106.Google Scholar
  7. 7.
    Chang, T. M. S. (1972),Artificial Cells, Thomas, C. C, ed., Springfield, IL, pp. 146 – 177.Google Scholar
  8. 8.
    Chang, T. M. S., Barré, P., Kuruvilla, S., Man, N. K., Lacaille, Y., Messier, D., Messier, M., and Resurreccion, E. (1982),Artificial Support Systems, Beliner, J., ed., Saunders, London, pp. 63–67.Google Scholar
  9. 9.
    Chang, T. M. S., Shu, C. D., Yu, Y. T., and Grunwald, J. (1982),Advances in the Treatment of Inborn Errors of Metabolism, Crawford, M., Gibbs, D., and Watts, R. W. E., eds., Wiley, London, pp. 175–184.Google Scholar
  10. 10.
    Siu Chong, E. D. and Chang, T. M. S. (1974),Enzyme 18, 218–239.Google Scholar
  11. 11.
    Poznansky, M. J. and Chang, T. M. S. (1974),Biochim. Biophys. Ada. 334, 103–115.Google Scholar
  12. 12.
    Jamieson, G. A. and Greenwalt, T. J. (1978),Blood Substitutes and Plasma Expanders, Liss, New York, pp. 223–226.Google Scholar
  13. 13.
    Kjellstrand, C., Borges, H., Pru, C., Gardner, D., and Fink, D. (1981),Trans. Amer. Soc. Artif. Int. Organs 27, 24–30.Google Scholar
  14. 14.
    Chang, T. M. S. and Geyer, R. P. (1988),Biomater. Artif. Cells Artif. Organs 16, 1–703.Google Scholar
  15. 15.
    Chang, T. M. S. (1984),Appl. Biochem. Biotechnol. 10, 5–24.CrossRefGoogle Scholar
  16. 16.
    Dueck, C. L., Neufeld, R. J., and Chang, T. M. S. (1986),Can. J. Chem. Eng. 64, 540–546.Google Scholar
  17. 17.
    Goosen, M. F. (1987),CRC Critical Reviews in Biocompatibility, Williams, D. F., ed., CRC, Boca Raton, FL, pp. 1–24.Google Scholar
  18. 18.
    Goosen, M. F. A., King, G. A., McKnight, C. A., and Marcotte, N. (1989),J. Memb. Sci. 41, 323–343.CrossRefGoogle Scholar
  19. 19.
    Chang, T. M. S. (1971),Biochim. Biophys. Res. Commun. 44, 1531–1536.CrossRefGoogle Scholar
  20. 20.
    Boguslaski, R. C. and Janik, A. M. (1971),Biochim. Biophys. Acta 250, 266–269.Google Scholar
  21. 21.
    Mori, T., Sato, T., Matuo, Y., Tosa, T., and Chibata, I. (1972),Biotechnol. Bioeng. 14, 663–673.CrossRefGoogle Scholar
  22. 22.
    Mori, T., Tosa, T., and Chibata, I. (1973),Biochim. Biophys. Acta. 321, 653–661.Google Scholar
  23. 23.
    Wood, D. A. and Whateley, T. L. (1982),J. Pharm. Pharmacol. 34, 552–557.Google Scholar
  24. 24.
    Ostergaard, J. C. W. and Martiny, S. C. (1973),Biotechnol. Bioeng. 15, 561–563.CrossRefGoogle Scholar
  25. 25.
    Sundaram, P. V. (1973),Biochimica et Biophysica Acta 321, 319–328.Google Scholar
  26. 26.
    Monshipouri, M. and Neufeld, R. J. (1991),Enz. Microb. Technol. 13, 309–313.CrossRefGoogle Scholar
  27. 27.
    Rousseau, I. and Atkinson, B. (1980),Analyst 105, 432–440.CrossRefGoogle Scholar
  28. 28.
    Blakeley, R. L., Webb, E. C., and Zerner, B. (1969),Biochem. 8, 1984–1990.CrossRefGoogle Scholar
  29. 29.
    Weatherburn, M. W. (1969),Anal. Chem. 39, 971–974.CrossRefGoogle Scholar
  30. 30.
    Van Assendelft, O. W. (1970),Spectrophotometry of Hemoglobin Derivatives, Royal Vangoreum, Assen, Netherlands, pp. 55–56.Google Scholar
  31. 31.
    Poncelet De Smet, B., Poncelet, D., and Neufeld, R. J. (1989),Enzyme Microb. Technol. 11, 27–37.CrossRefGoogle Scholar
  32. 32.
    Poncelet De Smet, B., Poncelet, D., and Neufeld, R. J. (1990),Can. J. Chem. Eng. 68, 443–448.CrossRefGoogle Scholar
  33. 33.
    Dixon, N. E., Blakeley, R. L., and Zerner, B. (1980),Can. J. Biochem. 58, 481–488.CrossRefGoogle Scholar
  34. 34.
    Miyawaki, O., Nakamura, K., and Yano, T. (1980),Agric. Biol. Chem. 44, 2865–2870.Google Scholar
  35. 35.
    Blakeley, R. L. and Zerner, B. (1984),J. Mole Catalysis 23, 263–292.CrossRefGoogle Scholar
  36. 36.
    Horbett, T. A., Weatherby, P. K., and Hoffman, A. S. (1977),J. Bioeng. 13, 61–78.Google Scholar
  37. 37.
    Horbett, T. A., Weatherby, P. K., and Hoffman, A. S. (1978),Thrombosis Res. 12, 319–329.CrossRefGoogle Scholar
  38. 38.
    Johnson, P. and Whateley, T. L. (1972),Biochim. Biophys. Ada 276, 323–327.Google Scholar
  39. 39.
    Fishbein, W. N. (1969),Ann. NY Acad. Sci. 147, 857–881.CrossRefGoogle Scholar
  40. 40.
    Sundaram, P. V. and Laidler, K. J. (1970),Can. J. Biochem. 48, 1132–1140.CrossRefGoogle Scholar
  41. 41.
    Lencki, W. J. (1987), The effect of protein structural configuration on the free enzyme kinetic behavior of urease, Ph.D Thesis, McGill University, Montreal, Quebec.Google Scholar
  42. 42.
    Miyawaki, O., Nakamura, K., and Yano, T. (1979),Agric. Biol. Chem. 43, 1133–1138.Google Scholar

Copyright information

© Humana Press Inc. 1992

Authors and Affiliations

  • M. Monshipouri
    • 1
  • R. J. Neufeld
    • 1
  1. 1.Department of Chemical EngineeringMontréalCanada

Personalised recommendations