The Journal of Geometric Analysis

, Volume 4, Issue 4, pp 539–552 | Cite as

Biholomorphisms in Dimension 2

  • K. Diederich
  • J. E. Fornæss
  • Z. Ye


In this paper we consider a classical regularity problem for biholomorphisms between two bounded real-analytic domains. It is proved that such biholomorphisms can be holomorphically extended through the boundaries of the domains in a space of complex dimension 2.

Math Subject Classification

32H02 32H40 32D15 

Key Words and Phrases

boundary behaviors biholomorphism holomorphic extension Segre variety 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Barrett, D., Irregularity of the Bergman projection on a smooth bounded domain in ℂ2.Ann. Math. 119, 431–436 (1984).CrossRefMathSciNetGoogle Scholar
  2. [2]
    Barrett, D., Regularity of the Bergman projection and local geometry of domains.Duke Math. J. 53, 333–343 (1986).CrossRefMathSciNetMATHGoogle Scholar
  3. [3]
    Baouendi, S., and Rothschild, L., Germs of CR-maps between real-analytic hypersurfaces.Inventiones Math. 93, 481–500 (1988).CrossRefMathSciNetMATHGoogle Scholar
  4. [4]
    Bell, S., Biholomorphic mappings and the gd-problem.Ann. Math. 114, 103–113 (1981).CrossRefGoogle Scholar
  5. [5]
    Bell, S., Local regularity of CR-homeomorphisms.Duke Math. J. 57, 295–300 (1988).CrossRefMathSciNetMATHGoogle Scholar
  6. [6]
    Diederich, K., and Fornæss, J. E., Pseudoconvex domains with real-analytic boundaries.Ann. Math. 107, 371–384 (1978).CrossRefMathSciNetGoogle Scholar
  7. [7]
    Diederich, K., and Fornæss, J. E., Biholomorphic maps between certain real-analytic domains in ℂ2.Math. Ann. 245, 255–272 (1979).CrossRefMathSciNetMATHGoogle Scholar
  8. [8]
    Diederich, K., and Fornæss, J. E., Biholomorphic mappings between two-dimensional Hartogs domains with real-analytic boundaries. InRecent Developments in Several Complex Variables, edited by J. E. Fornæss),Ann. Math. Stud. 100, 133–150 (1981).Google Scholar
  9. [9]
    Diederich, K., and Fornæss, J. E., Proper holomorphic mappings between real-analytic pseudoconvex domains in ℂn.Math. Ann. 282, 681–700 (1988).CrossRefMathSciNetMATHGoogle Scholar
  10. [10]
    Diederich, K., and Fornæss, J. E., Applications holomorphes propres entre domaines à bord analytique réel.C. R. Acad. Sci. Paris 307, 321–324 (1988).MATHGoogle Scholar
  11. [11]
    Diederich, K., and Webster, S. M., A reflection principle for degenerate real hypersurfaces.Duke Math. J. 47, 835–843 (1980).CrossRefMathSciNetMATHGoogle Scholar
  12. [12]
    Trépreau, J. M., Sur le prolongement des fonctions CR définies sur une hypersurface réele de classe C2 dans ℂn.Invent. Math. 83, 583–592 (1986).CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 1994

Authors and Affiliations

  • K. Diederich
    • 1
    • 2
  • J. E. Fornæss
    • 1
    • 2
  • Z. Ye
    • 1
    • 2
  1. 1.Mathematik, Berg.Universität-GHSWuppertal 1Germany
  2. 2.Department of MathematicsUniversity of MichiganMichigan

Personalised recommendations