Advertisement

Applied Biochemistry and Biotechnology

, Volume 31, Issue 1, pp 83–96 | Cite as

The promotion of molasse alcoholic fermentation usingSaccharomyces cerevisiae in the presence of γ-alumina

  • L. Iconomou
  • C. Psarianos
  • M. Kanellaki
  • A. Kalliafas
  • K. Kana
  • A. A. Koutinas
Article

Abstract

Using γ-alumina pellets, more than threefold increase of the ethanol productivity in the fermentation molasse has been obtained in the present work. Also, molasse fermentation in the presence of γ-alumina gave 78.4 g/L ethanol, ethanol yield factor 0.44 g/g, and conversion 89.4% at initial sugar concentration (ISC) 179.5 g/L, compared to 53.9 g/L, 0.30 g/g and 62.7% in its absence, respectively. Furthermore, it was found that γ-alumina reduces the activation energy Ea of fermentation. This inorganic material does not promote the fermentation of raisin extract.

Keywords

Fermentation Apply Biochemistry Synthetic Medium Molasse Initial Cell Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Koutinas, A. A., Kanellaki, M., Lycourghiotis, A., Typas, M. A., and Drainas, C. (1988),J. Appl. Microbiol. Biotechnol. 28, 235–239.Google Scholar
  2. 2.
    Kanellaki, M., Koutinas, A. A., Kana, K., Nikolopoulou, M., Papadimitriou, A., and Lycourghiotis, A. (1989),Biotechnol. Bioeng. 34(1), 121–125.CrossRefGoogle Scholar
  3. 3.
    Koutinas, A. A. and Kanellaki, M. (1990),J. Food Sci. 55(2), 525–531.CrossRefGoogle Scholar
  4. 4.
    Kana, K., Kanellaki, M., Papadimitriou, A., Psarianos, C., and Koutinas, A. A. (1989),J. Ferment. Bioeng. 68(3), 213–215.CrossRefGoogle Scholar
  5. 5.
    Tsoutsas, T., Kanellaki, M., Psarianos, C., Kalliafas, A., and Koutinas, A. A. (1990),J. Ferment. Bioeng. 69(2), 93–97.CrossRefGoogle Scholar
  6. 6.
    Swings, J. and Deley, J. (1977),Bacteriol. Rev. 41, 1–46.Google Scholar
  7. 7.
    Daugulis, A. J., Brown, N. M., Cluett, W.R., and Dunlop, D. B. (1981),Biotechnol. Lett. 3(11), 651–656.CrossRefGoogle Scholar
  8. 8.
    Margaritis, A. and Rowe, C. E. (1983),Dev. Ind. Microbiol. 24, 329–336.Google Scholar
  9. 9.
    Margaritis, A., Bajpai, P., and Wallace, J. (1981),Biotechnol. Lett. 3, 613–618.CrossRefGoogle Scholar
  10. 10.
    Rouxhet, P. G., Van Haecht, J. L., Didelez, J., Gerard, P., and Briquet, M. (1981),Enzym. Microb. Technol. 3, 49–54.CrossRefGoogle Scholar
  11. 11.
    Rogers, P. L., Lee, K. J, Scotnicki, M. L., and Triebe, D. E. (1982),Adv. Biochem. Eng. Biotechnol. 23, 37–84.Google Scholar
  12. 12.
    Koutinas, A. A., Kanellaki, M., Typas, M. A., and Drainas, C. (1986),Biotechnol. Lett. 8(7), 517–520.CrossRefGoogle Scholar
  13. 13.
    Scott, T. A. and Melvin, E. H. (1953),Anal. Chem. 25, 1651–1661.Google Scholar
  14. 14.
    Giannakoudakis, D., ed. (1964),Chemical Kinetic, University of Thessaloniki, Greece, p. 110.Google Scholar

Copyright information

© Humana Press Inc. 1991

Authors and Affiliations

  • L. Iconomou
    • 1
  • C. Psarianos
    • 1
  • M. Kanellaki
    • 1
  • A. Kalliafas
    • 1
  • K. Kana
    • 1
  • A. A. Koutinas
    • 1
  1. 1.Department of ChemisryUniversity of PatrasPatrasGreece

Personalised recommendations