Hydrolysis of nucleic acids in single-cell protein concentrates using immobilized benzonase

  • J. M. Moreno
  • J. M. Sanchez-Dmontero
  • A. Ballesteros
  • J. V. Sinisterra


Hydrolysis of nucleic acids for single-cell protein concentrates has been carried out in one step using immobilized benzonase on corn cob. The immobilization is carried out by tosylation of primary alcohols of cellulose of corn cob. The immobilized benzonase is more stable vs pH changes than native benzonase, but the same optimum values of [Mg(II)] and temperature are obtained. The DNase activity is greater than the RNase activity. The percentage of DNA is reduced to 3-6% and that of RNA to 50%. The protein loss is negligible (1%). The enzymatic activity per weight unit of enzyme is greater in the case of benzonase that in reported data for other nucleases insolubilized on corn cob by the same procedure.


Nucleic Acid Immobilization Apply Biochemistry Protein Loss DNase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bressani, R. and Elias L. C. (1968),Adv. Food Res. 16, 1–7.CrossRefGoogle Scholar
  2. 2.
    Kihlberg, R. (1972),Ann. Rev. Microbiol.26,427–466.CrossRefGoogle Scholar
  3. 3.
    Edozein, J. C, Udo, U. U., Young, V. R., and Scrimshaw, N. S. (1970),Nature (London) 228, 180.Google Scholar
  4. 4.
    Newell, K. A., Robbins, E. A., and Seeley, R. D. (1975), U.S. Patent 3,867,255.Google Scholar
  5. 5.
    Otero, M. A., Gonzalez, A. C., Bueno, G. E., and Garcia-Revilla, J. L. (1982),Biotechnol. Lett. 4, 149–152.CrossRefGoogle Scholar
  6. 6.
    Schlenk, I. and Dainko, J. L. (1965),J. Bacteriol. 89, 13–18.CrossRefGoogle Scholar
  7. 7.
    Martinez, M. C., Sanchez-Montero, J. M., Sinisterra, J. V., and Ballesteros, A. (1990),Biotechnol. Appl. Biochem. 12, 643–652.Google Scholar
  8. 8.
    Technical information: “Benzonase, the first industrial endonuclease” (1989), Alfred Benzon Inc., Merck PA.Google Scholar
  9. 9.
    Sanchez-Montero, J. M., Sinisterra, J. V., and Ballesteros, A. (1989),Appl. Biochem. Biotechnol. 22, 205–214.CrossRefGoogle Scholar
  10. 10.
    Sanchez-Montero, J. M., Sinisterra, J. V., and Ballesteros, A. (1988), Spanish Patent 8, 803,769.Google Scholar
  11. 11.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, J. (1951),J. Biol. Chem. 193, 265–275.Google Scholar
  12. 12.
    Peterson, G. L. (1979),Anal. Biochem. 100, 201–220.CrossRefGoogle Scholar
  13. 13.
    Schmidt, G. and Thannhauser, S. J. (1945),J. Biol. Chem. 161, 83–89.Google Scholar
  14. 14.
    Steward, P. R. (1975), inMethods in Cell Biology vol. II, Yeast Cells (Prescott, D., ed.), Academic, New York.Google Scholar
  15. 15.
    Nielsen, L. B. and Hansen, O. C. (1990), Summary book of 5th European Congress on Biotechnology, p. 247, Copenhagen (Denmark).Google Scholar
  16. 16.
    Miller, S. A. (1968), inSingle-Cell Protein (Mateles, R. I. and Tannenbaum, S. R., eds.), MIT Press, Cambridge, MA.Google Scholar
  17. 17.
    Moreno, J. M. (1991), Ph.D. thesis, Universidad Complutense de Madrid, Spain.Google Scholar
  18. 18.
    Dunnill, P. (1975), inProtein Isolation Single-Cell Protein II (Tannenbaum, S. R. and Wang, D. I. C., eds.), MIT Press, Cambridge, MA.Google Scholar
  19. 19.
    Alvarez, R. and Enriquez, A. (1988),Appl. Microbiol. Biotechnol.29, 208–210.CrossRefGoogle Scholar
  20. 20.
    Ibid (1984),Rev. Cienc. Biol. (Havana)15, 59–66.Google Scholar
  21. 21.
    (a) Hendenskog, H. and Mogren, H. (1970),Biotechnol. Bioeng. 2, 447. (b) Ibid (1973), 15, 129.Google Scholar

Copyright information

© Humana Press Inc. 1991

Authors and Affiliations

  • J. M. Moreno
    • 1
  • J. M. Sanchez-Dmontero
    • 1
  • A. Ballesteros
    • 2
  • J. V. Sinisterra
    • 1
  1. 1.Department of Organic and Pharmaceutical Chemistry, Faculty of PharmacyUniuersidad ComplutenseMadridSpain
  2. 2.Institute of CatalysisC.S.I.C.MadridSpain

Personalised recommendations