Advertisement

Applied Biochemistry and Biotechnology

, Volume 31, Issue 1, pp 1–9 | Cite as

Properties of a thermostable nonspecific fructofuranosidase produced by cladosporium cladosporioides cells for hydrolysis of Jerusalem artichoke extract

  • M. S. S. Ferreira
  • A. V. M. De Andrade
  • J. F. Kennedy
Article

Abstract

Thermostable invertase (E.C. 3.2.1.26) and inulinase 2,1-β-D fructan fructanohydrolase (E.C. 3.2.1.7) activities were produced byCladosporiwn cladosporioides grown on sucrose, inulin, yam extract, or Jerusalem artichoke. The ratio I (inulinase)/S(invertase) activity was between 0.31 and 0.36. Both activities had high temperature optima (60°C) and were stable during pretreatment for 4.5 h at this temperature. Whole cells of C.cladosporioides were used for batch fructose production from Jerusalem artichoke extract at several concentrations. With the highest extract concentration used (260 g total sugars/L), total hydrolysis was achieved in 150 min at 60°C. Thin-layer chromatography of the enzymatic hydrolysis of inulin and Jerusalem artichoke extract showed that from the beginning of the reaction, fructose was the only product released. This suggests an exoaction mechanism, β-D-fructofuranoside fructohydrolase [E.C. 3.2.1.2.6]

Keywords

Apply Biochemistry Inulin Total Sugar Invertase Activity Fructan 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Guiraud, J. P., Daurelles, J., and Galzy, P. (1981),Biotechnol. Bioeng. 23, 1461–1945.CrossRefGoogle Scholar
  2. 2.
    Duvnjak, Z., Kosaric, N., and Kliza, S. (1982),Biotechnol. Bioeng. 24, 2297–2308.CrossRefGoogle Scholar
  3. 3.
    Margaritis, A. and Bajpai, P. (1982),Biotechnol. Bioeng. 24, 941–953.CrossRefGoogle Scholar
  4. 4.
    Margaritis, A. and Bajpai, P. (1982),Biotechnol. Bioeng. 24, 1473–1482.CrossRefGoogle Scholar
  5. 5.
    Margaritis, A. and Bajpai, P. (1982),Biotechnol. Bioeng. 24, 1483–1493.CrossRefGoogle Scholar
  6. 6.
    Duvnjak, Z., Houle, C., and Mok, K. L. (1987),Biotechnol. Lett. 9, 343–346.CrossRefGoogle Scholar
  7. 7.
    Vandamme, J. and Derycke, D. G. (1983),Adv. Appl. Microbiol. 29, 139–176.CrossRefGoogle Scholar
  8. 8.
    Fuchs, A., Bruijn, J. M., and Niedeveld, C. J. (1985),Antonie Van Leeuwenhoek 51, 333–351.CrossRefGoogle Scholar
  9. 9.
    GrootWassink, J. W. D. and Fleming, S. E. (1980),EnzymeMicrob. Technol. 2, 45–53.Google Scholar
  10. 10.
    Kim, W. Y. Byun, S. M., and Uhm, T. B. (1982),Enzyme Microb. Technol. 4, 239–244.CrossRefGoogle Scholar
  11. 11.
    GrootWassink, J. W. D. and Hewitt, G. M. (1983),J. Gen. Microbiol. 129, 31–41.Google Scholar
  12. 12.
    Hewitt, G. M. and GrootWassink, J. W. D. (1984),Enzyme Microb. Technol. 6, 263–270.CrossRefGoogle Scholar
  13. 13.
    Lam, K. S. and GrootWassink, J. W. D. (1985),Enzyme Microb. Technol. 7, 239–242.Google Scholar
  14. 14.
    Guiraud, J. P., Bourgi, J., Chabbert, N., and Galzy, P. (1986),J. Gen. Appl. Microbiol. 32, 371–381.CrossRefGoogle Scholar
  15. 15.
    Tsang, E. W. T. and GrootWassink, J. W. D. (1988),Enzyme Microb. Technol. 10, 297–301.CrossRefGoogle Scholar
  16. 16.
    Bajpai, P. and Margaritis, A. (1985),J. Gen. Appl. Microbiol. 31, 305–311.CrossRefGoogle Scholar
  17. 17.
    Bajpai, P. and Margaritis, A. (1985),Enzyme Microb. Technol. 7, 373–376.CrossRefGoogle Scholar
  18. 18.
    Bajpai, P. and Margaritis, A. (1985),Enzyme Microb. Technol. 7, 459–461.CrossRefGoogle Scholar
  19. 19.
    Parekh, S. R. and Margaritis, A. (1986),J. Food Sci. 51, 854, 855.CrossRefGoogle Scholar
  20. 20.
    Rouwenhorst, R. J., Visser, L. E., Van der Baan, A. A., Scheffers, W. A., and Dijken, J. P. (1988),Appi. Environ. Microbiol. 52 (5), 1131–1137.Google Scholar
  21. 21.
    Zittan, L. (1981),Starch/Starke 33, 373–377.CrossRefGoogle Scholar
  22. 22.
    Ettalibi, M. and Baratti, J. C. (1987),Appl. Microbiol. Biotechnol. 26, 13–10.CrossRefGoogle Scholar
  23. 23.
    Mukherjee, K. and Sengupta, S. (1987),Can. J. Microbiol. 33, 520–524.CrossRefGoogle Scholar
  24. 24.
    Uhm, T. B., Byum, S. M., Kwon, Y. J., Han, S. B., and Ryu, K. S. (1987),Biotechnol. Lett. 9, 287–290.CrossRefGoogle Scholar
  25. 25.
    Kim, C. H. and Rhee, S. K. (1989),Biotechnol. Lett. 11, 201–206.CrossRefGoogle Scholar
  26. 26.
    Lacerda Filho, A. M. (1987),M.Sc. thesis, Federal University of Pernambuco, Brazil.Google Scholar
  27. 27.
    Bernfeld, P. (1955), inMethods in Enzymology, vol. 1, Collowick, S. P. and Kaplan, N. C., eds., Academic, New York, pp. 149–158.CrossRefGoogle Scholar
  28. 28.
    Collens, F. W. and Chandorkar, K. R. (1971),J. Chromatogr. 56, 136–167.Google Scholar
  29. 29.
    Wise, C. S., Dimber, R. J., Davis, H. A., and Rist, C. E. (1955),Anal. Chem. 27, 33–36.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1991

Authors and Affiliations

  • M. S. S. Ferreira
    • 1
  • A. V. M. De Andrade
    • 2
  • J. F. Kennedy
    • 3
  1. 1.Departamento de BioquimicaCentro de Ciencias Biologicas, Universidade Federal de PemambucoRecifeBrazil
  2. 2.Departmento de Quimica AplicadaUniversidade Federal de PernambucoBrazil
  3. 3.Research Laboratory for the Chemistry of Bioactive Carbohydrates and ProteinsSchool of Chemistry University of BirminghamBirminghamUK

Personalised recommendations