Advertisement

The Journal of Geometric Analysis

, Volume 16, Issue 2, pp 353–374 | Cite as

One-parameter families of operators in ℂ

  • Andrew S. Raich
Article

Abstract

We introduce classes of one-parameter families (OPF) of operators on C c t8 (ℂ) which characterize the behavior of operators associated to the\(\bar \partial - problem\) problem in the weighted space L2 (ℂ, e−2p) where p is a subharmonic, nonharmonic polynomial. We prove that an order 0 OPF operator extends to a bounded operator from Lq (ℂ) to itself, 1 < q < ∞, with a bound that depends on q and the degree of p but not on the parameter τ or the coefficients of p. Last, we show that there is a one-to-one correspondence given by the partial Fourier transform in τ between OPF operators of order m ≤ 2 and nonisotropic smoothing (NIS) operators of order m ≤ 2 on polynomial models in ℂ2.

Math Subject Classifications

32W50 32W30 32T25 

Key Words and Phrases

Finite type NIS operator one-parameter families weakly pseudoconvex domain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Berndtsson, B. Weighted estimates for\(\bar \partial \) in domains in ℂ,Duke Math. J. 66(2), 239–255, (1992).CrossRefMathSciNetMATHGoogle Scholar
  2. [2]
    Berndtsson, B.\(\bar \partial \) and Schrödinger operators,Math. Z. 221, 401–413, (1996).MathSciNetMATHGoogle Scholar
  3. [3]
    Christ, M. On the\(\bar \partial \) equation in weighted L2 norms in ℂ1,J. Geom. Anal. 1(3), 193–230, (1991).MathSciNetMATHGoogle Scholar
  4. [4]
    Fornæss, J. E. and Sibony, N. OnL P estimates for\(\bar \partial \), inSeveral Complex Variables and Complex Geometry, Part 3, (Santa Cruz, CA, 1989), Proc. Sympos. Pure Math.,52, Part 3, 129–163, Providence, RI, American Mathematical Society, (1991).Google Scholar
  5. [5]
    Hörmander, L. L2 estimates and existence theorems for the\(\bar \partial \) operator,Acta Math. 113, 89–152, (1965).CrossRefMathSciNetMATHGoogle Scholar
  6. [6]
    Hörmander, L.An Introduction to Complex Analysis in Several Variables, North-Holland Mathematical Library,7, North-Holland Publishing Co., Amsterdam, 3rd ed., (1990).MATHGoogle Scholar
  7. [7]
    Kurata, K. An estimate on the heat kernel of magnetic Schrödinger operators and uniformly elliptic operators with nonnegative potentials,J. London Math. Soc. 62(3), 885–903, (2000).CrossRefMathSciNetMATHGoogle Scholar
  8. [8]
    Nagel, A. Vector fields and nonisotropic metrics, inBeijing Lectures in Harmonic Analysis, Ann. of Math. Stud., 241–306. Princeton University Press, (1986).Google Scholar
  9. [9]
    Nagel, A., Rosay, J.-P., Stein, E. M., and Wainger, S. Estimates for the Bergman and Szegö kernels in ℂ2,Ann. of Math. (2) 129, 113–149, (1989).CrossRefMathSciNetGoogle Scholar
  10. [10]
    Nagel, A. and Stein, E. M. The\(\bar \partial _b - complex\) on decoupled domains in ℂn,n ≥ 3,Ann. of Math. (2), to appear.Google Scholar
  11. [11]
    Nagel, A. and Stein, E. M. The □b-heat equation on pseudoconvex manifolds of finite type in ℂ2,Math. Z. 238, 37–88, (2001).CrossRefMathSciNetMATHGoogle Scholar
  12. [12]
    Nagel, A. and Stein, E. M. On the product theory of singular integrals,Rev. Mat. Iberoamericana 20, 531–561, (2004).MathSciNetGoogle Scholar
  13. [13]
    Nagel, A., Stein, E. M., and Wainger, S. Balls and metrics defined by vector fields I: Basic properties,Acta Math. 155, 103–147, (1985).CrossRefMathSciNetMATHGoogle Scholar
  14. [14]
    Raich, A. Heat equations in ℝ × ℂ, submitted, [arXiv:math.CV/0508571], (2005).Google Scholar
  15. [15]
    Raich, A. Pointwise estimates for relative fundamental solutions of heat equations in ℝ × ℂ, preprint, (2006).Google Scholar
  16. [16]
    Ricci, F. and Stein, E. M. Harmonic analysis on nilpotent groups and singular integrals, I, oscillatory integrals,J. Funct. Anal. 73, 179–194, (1987).CrossRefMathSciNetMATHGoogle Scholar
  17. [17]
    Shen, Z. Estimates in LP for magnetic Schrödinger operators,Indiana Univ. Math. J. 45(3), 817–841, (1996).CrossRefMathSciNetMATHGoogle Scholar
  18. [18]
    Shen, Z. On fundamental solutions of generalized Schrödinger operators,J. Funct. Anal. 167(2), 521–564, (1999).CrossRefMathSciNetMATHGoogle Scholar
  19. [19]
    Stein, E. M.Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series,43, Princeton University Press, Princeton, NJ, (1993).MATHGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2006

Authors and Affiliations

  1. 1.Texas A&M UniversityUSA

Personalised recommendations