Advertisement

The Journal of Geometric Analysis

, Volume 14, Issue 3, pp 457–486 | Cite as

Maximum boundary regularity of bounded Hua-harmonic functions on tube domains

  • Aline Bonami
  • Dariusz Buraczewski
  • Ewa Damek
  • Andrzej Hulanicki
  • Philippe Jaming
Article
  • 37 Downloads

Abstract

In this article we prove that bounded Hua-harmonic functions on tube domains that satisfy some boundary regularity condition are necessarily pluriharmonic. In doing so, we show that a similar theorem is true on one-dimensional extensions of the Heisenberg group or equivalently on the Siegel upper half-plane.

Math Subject Classifications

22E30 32M15 35J25 58J32 

Key Words and Phrases

Hua-harmonic functions boundary regularity tube domains pluriharmonic functions Heisenberg group 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bonami, A., Buraczewski, D., Damek, E., Hulanicki, A., Penney, R., and Trojan, B. Hua system and plurihar-monicity for symmetric irreducible Siegel domains of type II,J. Funct. Anal.,188, 38–74, (2002).CrossRefMathSciNetMATHGoogle Scholar
  2. [2]
    Bonami, A., Bruna, J., and Grellier, S. On Hardy, BMO and Lipschitz spaces of invariant harmonic functions in the unit ball,Proc. London Math. Soc.,71, 665–696, (1998).CrossRefMathSciNetGoogle Scholar
  3. [3]
    Buraczewski, D. The Hua system on irreducible Hermitian symmetric spaces of nontube type,Ann. I. Fourier,54, 81–128, (2004).MathSciNetMATHGoogle Scholar
  4. [4]
    Buraczewski, D., Damek, E., and Hulanicki, A. Bounded pluriharmonic functions on symmetric irreducible Siegel domains,Math. Z.,240, 169–195, (2002).CrossRefMathSciNetMATHGoogle Scholar
  5. [5]
    Damek, E., Hulanicki, A., Müller, D., and Peloso, M. Pluriharmonic H2 functions on symmetric irreducible Siegel domains,Geom. Funct. Anal. 10, 1090–1117, (2000).CrossRefMathSciNetMATHGoogle Scholar
  6. [6]
    Faraut, J. and Korányi, A.Analysis On Symmetric Cones, Oxford Math. Mongraphs, Oxford Sc. Publ., Calderon Press, (1994).Google Scholar
  7. [7]
    Folland, G. Spherical harmonic expansion of the Poisson-Szegö kernel for the ball,Proc. Am. Math. Soc.,47, 401–408, (1975).CrossRefMathSciNetMATHGoogle Scholar
  8. [8]
    Folland, G.Harmonic Analysis in Phase Space, Princeton University Press, Princeton, NJ, (1989).MATHGoogle Scholar
  9. [9]
    Graham, C.R. The Dirichlet problem for the Bergman Laplacian, I,Commun. Partial Diff. Eq.,8, 433–476, (1983).MATHGoogle Scholar
  10. [10]
    Graham, C.R. The Dirichlet problem for the Bergman Laplacian, II,Commun. Partial Diff. Eq.,8, 563–641, (1983).CrossRefMATHGoogle Scholar
  11. [11]
    Jaming, Ph. Harmonic functions on the real hyperbolic ball I: Boundary values and atomic decomposition of Hardy spaces,Coll. Math.,80, 63–82, (1999).MathSciNetMATHGoogle Scholar
  12. [12]
    Jaming, Ph. Harmonic functions on classical rank one balls,Boll. Unione Mat. Ital. 4-B,8, 685–702, (2001).MathSciNetGoogle Scholar
  13. [13]
    Lassalle, M. Algebres de Jordan et ensemble de Wallach,Invent. Math.,89, 375–393, (1987).CrossRefMathSciNetMATHGoogle Scholar
  14. [14]
    Laville, G. Fonctions pluriharmoniques et solution foundamentale d’un opérateur du quatrième ordre,Bull. de Sc. Mathematiques,101, 305–317, (1977).MathSciNetMATHGoogle Scholar
  15. [15]
    Johnson, K. and Korányi, A. The Hua operators on bounded symmetric domains of tube type,Ann. Math.,111, 589–608, (1980).CrossRefGoogle Scholar
  16. [16]
    Stein, E.M.Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, 43, Monographs in Harmonic Analysis, III, Princeton University Press, Princeton, NJ, (1993).Google Scholar
  17. [17]
    Szegö, G. Orthogonal polynomials,Am. Math. Soc., Colloq. publ., Providence, RI, (1967).Google Scholar
  18. [18]
    Thangavelu, S.Harmonic Analysis on the Heisenberg Group, Birkhäuser, Boston, MA, (1998).MATHGoogle Scholar
  19. [19]
    Trojan, B. Hua-harmonic functions on homogeneous Siegel domains, preprint.Google Scholar

Copyright information

© Mathematica Josephina, Inc. 2004

Authors and Affiliations

  • Aline Bonami
    • 1
    • 2
  • Dariusz Buraczewski
    • 1
    • 2
  • Ewa Damek
    • 1
    • 2
  • Andrzej Hulanicki
    • 1
    • 2
  • Philippe Jaming
    • 1
    • 2
  1. 1.MAPMOUniversité d’OrléansOrléans Cedex 2France
  2. 2.Poland

Personalised recommendations