Production of exocellular polysaccharide by azotobacter chroococcwn

  • M. G. De La Vega
  • F. J. Cejudo
  • A. Paneque


Environmental conditions affect the production of extracellular polysaccharide byAzotobacter chroococcum ATCC 4412. Production of exocellular polymer from a variety of carbon sources depended on the air flow rate. A high sucrose concentration in medium (8%) markedly favored exopolysaccharide production, which reached 14 g/L in about 72 h. In cell suspensions incubated in the presence of 8% sucrose in a nitrogen-free medium, biopolymer final concentration of 9 g/L corresponds to 68 g/g biomass. Maximum efficiency of sucrose conversion into exopolysaccharide peaked at 70% for initial disaccharide concentration of 6%. High performance liquid chromatography and gas liquid chromatography of acid hydrolysates of the exopolymer revealed the presence of mannuronosyl, guluronosyl, and acetyl residues, but not neutral sugars. The infrared spectrum corroborated the presence of carboxylate anions and O-acetyl groups in the exopolymer. Though the presence of more than one kind of polysaccharide cannot be ruled out, these data suggest that, under the experimental conditions used in this work, only a type of alginate-like exopolysaccharide is produced byA. chroococcum ATCC 4412.

Index Entries

Alginate carbon sources biotransformation molasses Azotobacter chroococcum 


  1. 1.
    Sutherland, I. W. (1985),Ann. Rev. Microbiol. 39, 243–270.CrossRefGoogle Scholar
  2. 2.
    Sandford, P. A., Cottrell, I. W., and Pettitt, D. J. (1984),Pure Appl. Chem. 56, 879–892.CrossRefGoogle Scholar
  3. 3.
    Sutherland, I. W. (1986),Microbiol. Sci. 3, 5–8.Google Scholar
  4. 4.
    Evans, L. R. and Linker, A. (1973),J. Bacterial. 116, 915–924.Google Scholar
  5. 5.
    Deretic, V., Gill, J. F., and Chakrabarty, A. M. (1987),Biotechnology 5, 469–477.CrossRefGoogle Scholar
  6. 6.
    Chen, W-P., Chen, J-Y., Chang, S-C., and Su, C-L. (1985),Appl. Environm. Microbiol 49, 543–546.Google Scholar
  7. 7.
    Lawson, G. L. and Stacey, M. (1954),J. Chem. Soc. (London) p. 1925–1931.Google Scholar
  8. 9.
    Cote, G. L. and Krull, L. H. (1988),Carbohydr. Res. 181, 143–152.CrossRefGoogle Scholar
  9. 9.
    Cejudo, F. J. and Paneque A. (1988),Arch. Microbiol. 149, 481–484.CrossRefGoogle Scholar
  10. 10.
    Brivonese, A. C. and Sutherland, I. W. (1989),Appl. Microbiol. Biotechnol. 30, 97–102.CrossRefGoogle Scholar
  11. 11.
    Paneque, A., de la Vega, M. G., and Cejudo, F. J. (1988),Second Spanish Conference on Biotechnology, Abstracts, p. 277.Google Scholar
  12. 12.
    Cejudo, F. J., de la Torre, A., and Paneque, A. (1984),Biochem. Biophys. Res. Commun. 123, 431–437.CrossRefGoogle Scholar
  13. 13.
    Blackeny, A. B., Harris, P. J., Henry, R. J., and Stone, B. A. (1983),Carbohydr. Res. 113, 291–293.CrossRefGoogle Scholar
  14. 14.
    Taylor, R. L. and Conrad, H. E. (1972),Biochemistry 11, 1383–1388.CrossRefGoogle Scholar
  15. 15.
    Bergmeyer, H. U. and Bernt, E. (1974),Methods of Enzymatic Analysis, Academic, New York and London, pp. 1176 and 1221.Google Scholar
  16. 16.
    De la Vega, M. G., Cejudo, F. J., and Paneque, A. (1991),Enzyme Microb. Technol. 13, 267–271.CrossRefGoogle Scholar
  17. 17.
    Okabe, E., Nakajima, M., Murooka, H., and Nisizawa, K. (1981),J. Ferment. Technol. 59, 1–7.Google Scholar
  18. 18.
    Antón, J., Meseguer, I., and Rodríguez-Valera, F. (1988),Appl. Environm. Microbiol. 54, 2381–2386.Google Scholar
  19. 19.
    Horan, N. J., Jarman, T. R., and Dawes, E. A. (1981),J. Gen. Microbiol. 127, 185–191.Google Scholar
  20. 20.
    Deavin, L., Jarman, T. R., Lawson, C. J., Righelato, R. C., and Slocombe, S. (1977), inExtracellular Microbial Polysaccharides, Sandford, P. A. and Laskin, A., eds., American Chemical Society, Washington, pp. 14–26.Google Scholar
  21. 21.
    Hacking, A. J., Taylor, I. W. F., Jarman, T. R., and Govan, J. R. W. (1983),J. Gen. Microbiol. 129, 3473–3480.Google Scholar
  22. 22.
    Sutherland, I. W. (1977), inExtracellular Microbial Polysaccharides, Sandford, P. A. and Laskin, A., eds., American Chemical Society, Washington, pp. 40–57.Google Scholar
  23. 23.
    Jarman, T. R., Deavin, L., Slocombe, S., and Righelato, R. C. (1978),J. Gen. Microbiol. 107, 59–64.Google Scholar
  24. 24.
    Williams, A. G. and Wimpenny, J. W. T. (1977),J. Gen. Microbiol. 102, 13–21.Google Scholar
  25. 25.
    Cohen, G. H. and Johnstone, D. B. (1964),J. Bacteriol. 88, 329–338.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1991

Authors and Affiliations

  • M. G. De La Vega
    • 1
  • F. J. Cejudo
    • 1
  • A. Paneque
    • 1
  1. 1.Institute de Bioquímica Vegetal y FotosíntesisUniuersidad de Sevilla-Consejo Superior de Inuestigaciones CientíficasSevillaSpain

Personalised recommendations