Skip to main content
Log in

Solar energy conversion from water photolysis by biological and chemical systems

Invited review

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The production of chemicals and fuels, or energy-rich compounds, from water by sunlight is described as a particularly attractive means for the conversion of solar energy to a valuable renewable resource. The redox properties of photoexcited molecules and the operating mechanism of light-driven systems are first considered. The mechanism of water oxidation carried out by higher plants and green algae-which is actually one of the most important biochemical reactions—as well as that of artificial photosystems, up-to-now designed trying to simulate the natural process with higher efficiency and simplicity, are likewise discussed. A number of biological and chemical light-driven systems are presented as practical ways to solar energy conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

chl:

chlorophyll

Eó:

standard redox potential

E0-0 :

0-0 spectroscopic energy

F:

flavin

MV:

methyl viologen

MO2:

metal dioxide

P and P:

ground and energized states of a pigment

Ru(bpy)n+ 3 :

tris(2,2′-bipyridine)ruthenium(n)

V0-0:

electron potentialgap between the zero vibrational levels of two orbitals.

References

  1. Connolly, J. S. (ed.) (1981),Photochemical Conversion and Storage of Solar Energy, Academic Press, New York, London.

    Google Scholar 

  2. Claesson, S. and Holmströn, B. (eds.) (1982),Solar Energy-Photochemical Processes Available for Energy Conversion, National Swedish Board for Energy Source Development, Stockholm.

    Google Scholar 

  3. Grätzel, M. (ed.) (1983),Energy Resources through Photochemistry and Cata-lysis, Academic Press, New York, London.

    Google Scholar 

  4. Hall, D. O., Palz, W., and Pirrwitz, D. (eds.) (1983),Photochemical, Photoelectrochemical and Photobiological Processes, Series D, vol. 2, Reidel, Dordrecht.

    Google Scholar 

  5. Grassi, G. and Hall, D. O. (eds.) (1988),Photocatalytic Production of Energy-Rich Compounds, Elsevier Applied Science, London.

    Google Scholar 

  6. Hall, D. O. and Grassi, G. (eds.) (1989),Photoconversion Processes for Energy and Chemicals, Elsevier Applied Science, London.

    Google Scholar 

  7. Norris, J. R. and Meisel, D. (eds.) (1989),Photochemical Energy Conversion, Elsevier Science, New York.

    Google Scholar 

  8. Bolton, J. R., Haught, A. F., and Ross, R. T. (1981),Photochemical Conversion and Storage of Solar Energy, Connolly, J. S., ed., Academic Press, New York, London, pp. 297–340.

    Google Scholar 

  9. Campen, C. F., Cole, A. E., Condron, T. P., Ripley, W. S., Sissenwine, N., and Solomon, I. (eds.) (1960),Handbook of Geophysics, Macmillan, New York, p. 14.

    Google Scholar 

  10. Navarro, J. A., Roncel, M., and De la Rosa, M. A. (1987),Photochem. Photobiol. 46, 965.

    Article  CAS  Google Scholar 

  11. Navarro, J. A., Roncel, M., De la Rosa, F. F., and De la Rosa, M. A. (1987),J. Photochem. Photobiol. A: Chemistry 40, 279.

    Article  CAS  Google Scholar 

  12. Ramos, J. L., Guerrero, M. G., and Losada, M. (1982),Appl. Environ. Microbiol. 44, 1020.

    CAS  Google Scholar 

  13. Ramos, J. L., Guerrero, M. G., and Losada, M. (1984),Appl. Environ. Microbiol. 48, 114.

    CAS  Google Scholar 

  14. Brouers, M. and Hall, D. O. (1986),J. Biotechnol. 3, 307.

    Article  CAS  Google Scholar 

  15. Halmann, M. (1983),Energy Resources through Photochemistry and Catalysis, Grätzel, M., ed. Academic Press, New York, London, pp. 507–534.

    Google Scholar 

  16. Mimeault, M. and Carpentier, R. (1989),Bioelectrochem. Bioenerg. 22, 145.

    Article  CAS  Google Scholar 

  17. Relimpio, A. M., Vega, J. M., Guerrero, M. G., and Losada, M., (1977),Potenciometńa y Bioenergética, Publicaciones de la Universidad de Sevilla, Sevilla.

    Google Scholar 

  18. Atkins, P. W. (1989),General Chemistry, Scientific American Books, New York.

    Google Scholar 

  19. Crampton, C. A., Faber, G., Jones, R., Leaver, J. P., and Schelle, S. (1977),The Modern Inorganic Chemical Industry, Thompson, R., ed. The Chemical Society, Burlington House, London, pp. 232–272.

    Google Scholar 

  20. Balzani, V. and Scandola, F. (1983),Energy Resources through Photochemistry and Catalysis, Grätzel, M., ed. Academic Press, New York, London, pp. 1–48.

    Google Scholar 

  21. Kalyanasundaram, K. and Grätzel, M. (1984),Photochem. Photobiol. 40, 807.

    Article  CAS  Google Scholar 

  22. Kalyanasundaram, K., Kiwi, J., and Grätzel, M. (1978),Helv. Chim. Acta 61, 2720.

    Article  CAS  Google Scholar 

  23. Kirsch, M., Lehn, J. ML, and Sauvage, J. P. (1979),Helv. Chim. Acta 62, 1345.

    Article  Google Scholar 

  24. Fontes, A. G., De la Rosa, F. F., and Gómez-Moreno, C. (1981),Photobiochem. Photobiophys. 2, 355.

    CAS  Google Scholar 

  25. Ashmawy, F. M., McAuliffe, Ch. A., and Tames, J. (1979),Inorganic Perspectives in Biology and Medicine 2, 211.

    CAS  Google Scholar 

  26. Mislin, H. and Bachofen, R. (eds.) (1982),New Trends in Research and Utilization of Solar Energy through Biological Systems, Experientia Supplementum, vol. 43, Birkhäuser Verlag, Basel, Boston, Stuttgart.

    Google Scholar 

  27. Almgrem, M., Holmström, B., and Tegnér, L. (1977),Solar Energy-Photochemical Conversion and Storage, Claesson, S., and Engström, L., eds., National Swedish Board for Energy Source Development, Stockholm, pp. II: 1–66.

    Google Scholar 

  28. Kavarnos, G. L. and Turro, N. J. (1986),Chem. Rev. 86, 401.

    Article  CAS  Google Scholar 

  29. Losada, M., Hervás, M., De la Rosa, M. A., and De la Rosa, F. F. (1983),Bioelectrochem. Bioenerg. 11, 193.

    Article  CAS  Google Scholar 

  30. Barber, J. (1987),The Biochemistry of Plants, Stumpf, P. K., and Conn, E. E., ed., vol. 10, Academic Press, San Diego, pp. 75–130.

    Google Scholar 

  31. Amesz, J. (1987),Photosynthesis, Elsevier Science B.V. (Biomedical Division), Amsterdam.

    Book  Google Scholar 

  32. Song, P-S. (1971),Flavins and Flavoproteins, Kamin, H. ed. University Park Press, Baltimore, pp. 37–61.

    Google Scholar 

  33. De la Rosa, F. F., De la Rosa, M. A., Fontes, A. G., and Gómez-Moreno, C. (1987),Investigatión y Ciencia (Spanish edition of Sci. Am.)125, 8.

    Google Scholar 

  34. Heelis, P. F. (1982),Chem. Soc. Rev. 11, 15.

    Article  CAS  Google Scholar 

  35. Grodowski, M. S., Veyret, B., and Weiss, K. (1977),Photochem. Photobiol. 26, 341.

    Article  CAS  Google Scholar 

  36. Pauling, L. and Pauling, P. (1975),Chemistry, Freeman and Company, San Franciscio.

    Google Scholar 

  37. Losada, M., Guerrero, M. G., De la Rosa, M. A., Serrano, A., Hervás, M., and Ortega, J. M. (1980),Bioelectrochem. Bioenerg. 23, 105.

    Article  Google Scholar 

  38. Govindjee and Coleman, W. J. (1990),Sci. Am. 262, 42.

    Article  Google Scholar 

  39. Arnon, D. I. (1959),Nature 184, 10.

    CAS  Google Scholar 

  40. Hill, R. and Bendall, F. (1960),Nature 186, 136.

    Article  CAS  Google Scholar 

  41. Brudvig, G. H. and Beck, W. F. (1989),Annu. Rev. Biophys. Biophys. Chem. 18, 25.

    Article  CAS  Google Scholar 

  42. Volkov, A. G. (1989),Bioelectrochem. Bioenerg. 21, 3.

    Article  CAS  Google Scholar 

  43. Kok, B., Forbush, B., and McGloin, M. P. (1970),Photochem. Photobiol. 11, 457.

    Article  CAS  Google Scholar 

  44. Forbush, B., Kok, B., and McGloin, M. P. (1971),Photochem. Photobiol. 14, 307.

    Article  CAS  Google Scholar 

  45. Hipkins, M. F. and Baker, N. R. (eds.) (1986),Photosynthesis Energy Transduction, IRL Press, Oxford, Washington.

    Google Scholar 

  46. Hansson, O. and Wydrzynski, T. (1990),Photosynth. Res. 23, 131.

    Article  CAS  Google Scholar 

  47. Blubaugh, D. J. and Govindjee (1988),Photosynth. Res. 19, 85.

    Article  CAS  Google Scholar 

  48. Radmer, R. and Ollinger, O. (1986),FEBS Lett. 195, 285.

    Article  CAS  Google Scholar 

  49. Kambara, T. and Govindjee (1985),Proc. Natl. Acad. Sci. USA 82, 6119.

    Article  CAS  Google Scholar 

  50. Brudvig, G. W. and Crabtee, R. H. (1986),Proc. Natl. Acad. Sci. USA 83, 4586.

    Article  CAS  Google Scholar 

  51. Christou, G. and Vicent, J. B. (1987),Biochim. Biophys. Acta 895, 259.

    CAS  Google Scholar 

  52. Pecoraro, V. L. (1988),Photochem. Photobiol. 48, 249.

    Article  CAS  Google Scholar 

  53. Weaver, P. F., Lien, S., and Siebert, M. (1980),Solar Energy 24, 3.

    Article  CAS  Google Scholar 

  54. Rehm, H-J. and Reed, G. (eds.) (1984),Biotechnology, vol. 6 a: Biotransformations, Kieslich, K., ed. Verlag-Chemie, Weinheim.

    Google Scholar 

  55. Cammack, R., Hall, D. O., and Rao, K. K. (1985),Microbial Gas Metabolism: Mechanistic, Metabolic and Biotechnological Aspects, Poole J. R., and Dow, C, ed., Society for General Microbiology, Academic Press, London, pp. 75–102.

    Google Scholar 

  56. De la Rosa, M. A., Rao, K. K., and Hall, D. O. (1986),Photobiochem. Photobiophys. 11, 173.

    Google Scholar 

  57. Rao, K. K. and Hall, D. O. (1984),Trends Biotechnol. 2, 124.

    Article  CAS  Google Scholar 

  58. Elstner, E. F. and Frommeyer, D. (1978),FEBS Lett. 86, 143.

    Article  CAS  Google Scholar 

  59. Greenbaum, E. (1989),Photochemical Energy Conversion, Norris, J. R., and Meisel, D. ed., Elsevier Science, New York, pp. 184–195.

    Google Scholar 

  60. Willner, I., Mandler, D., and Maidan, R. (1987),Nouv. J. Chim. 11, 109.

    CAS  Google Scholar 

  61. Hall, D. O., Rao, K. K., de Jong, H., Grätzel, M., and Evans, M. C. W. (1988),Photocatalytic Production of Energy-Rich Compounds, Grassi, G., and Hall, D. O., ed., Elsevier Applied Science, London, pp. 28–40.

    Google Scholar 

  62. Hall, D. O., Rao, K. K., Shi, D. J., Grätzel, M., Vlachopoulos, N., Evans, M. C. W., and Seibert, M. (1989),Photoconversion Processes for Energy and Chemicals, Hall, D. O., and Grassi, G., ed., Elsevier Applied Science, London, New York, pp. 28–45.

    Google Scholar 

  63. Navarro, J. A., Roncel, M., De la Rosa, F. F., and De la Rosa, M. A. (1987),Bioelectrochem. Bioenerg. 18, 71.

    Article  CAS  Google Scholar 

  64. Roncel, M., Navarro, J. A., and De la Rosa, M. A. (1989),Appl. Environ. Microbiol. 55, 483.

    CAS  Google Scholar 

  65. Crosby, G. A. (1975),Accounts. Chem. Res. 8, 231.

    Article  CAS  Google Scholar 

  66. Kirch, M., Lehn, J.M., and Sauvage, J. P. (1979),Helv. Chim. Acta 62,1345.

    Article  CAS  Google Scholar 

  67. Crosby, G. A., Perkins, W. G., and Kaplen, D. M. (1965),J. Chem. Phys. 43, 1498.

    Article  CAS  Google Scholar 

  68. Sutin, N. (1979),J. Photochem. 10, 19.

    Article  CAS  Google Scholar 

  69. Kalyanasundaran, K. (1982),Coordin. Chem. Rev. 46, 159.

    Article  Google Scholar 

  70. Balzani, V., Bolletta, F., Gandolfi, M. T., and Maestri, M. (1978),Top. Curr. Chem. 75, 1.

    Article  CAS  Google Scholar 

  71. Meyer, T. J. (1978),Accounts Chem. Res. 11, 94.

    Article  CAS  Google Scholar 

  72. Creutz, C. and Sutin, N. (1975),Proc. Natl. Acad. Sci. USA 72, 2858.

    Article  CAS  Google Scholar 

  73. Lehn, J. M., Sauvage, J. P., and Ziessel, R. (1979),Nouv. J. Chim. 3, 423.

    CAS  Google Scholar 

  74. Kiwi, J. and Grätzel, M. (1979),Chimia 33, 289.

    CAS  Google Scholar 

  75. Borgarello, E., Kiwi, J., Pelizzetti, E., Visca, M., and Grätzel, M., (1981),Nature 289, 158.

    Article  CAS  Google Scholar 

  76. Johansen, O., Launikonis, A., Loder, J. W., Mau, A. W. H., Sasse, W. H. F., Swift, J. D., and Wells, D. (1981),Aust. J. Chem. 34, 981.

    CAS  Google Scholar 

  77. Johansen, O., Mau, A. W. H., and Sasse, W. H. F. (1983),Chem. Phys. Lett. 94, 113.

    Article  CAS  Google Scholar 

  78. Mandal, K. and Hoffman, M. Z. (1984),J. Phys. Chem. 88, 5632.

    Article  CAS  Google Scholar 

  79. Kiwi, J. and Grätzel, M. (1978),Angew. Chem. Int. Ed. Engl. 17, 860.

    Article  Google Scholar 

  80. Kalyanasundaran, K. and Grätzel, M. (1979),Angew. Chem. Int. Ed. Engl. 18, 701.

    Article  Google Scholar 

  81. Kiwi, J., Borgarello, E., Pelizzetti, E., Visca, M., and Grätzel, M. (1980),Angew. Chem. Int. Ed. Engl. 19, 646.

    Article  Google Scholar 

  82. Trasatti, S. and Buzzanca, G. (1971),Electroanal. Chem. 29, App. 1.

    Google Scholar 

  83. Borgarello, E., Kiwi, J., Pelizzetti, E., Visca, M., and Grätzel, M. (1981),J. Am. Chem. Soc. 103, 6324.

    Article  CAS  Google Scholar 

  84. Duonghong, D., Borgarello, E., and Grätzel, M. (1981),J. Am. Chem. Soc. 103, 4685.

    Article  CAS  Google Scholar 

  85. Kalyanasundaran, K., Borgarello, E., and Grätzel, M. (1981),Helv. Chim. Acta 64, 362.

    Article  Google Scholar 

  86. Duonghong, D., Ramsden, J., and Grätzel, M. (1982),J. Am. Chem. Soc. 104, 2977.

    Article  Google Scholar 

  87. Humphry-Baker, R., Lilie, J., and Grätzel, M. (1982),J. Am. Chem. Soc. 104, 422.

    Article  CAS  Google Scholar 

  88. De la Rosa, M. A., Navarro, J. A., De la Rosa, F. F., and Losada, M. (1983),Photobiochem. Photobiophys.5, 93.

    Google Scholar 

  89. Roncel, M., Navarro, J. A., and De la Rosa, M. A. (1988),J. Photochem. Photobiol. A: Chemistry 45, 341.

    Article  CAS  Google Scholar 

  90. Fujishima, A. and Honda, K. (1971),Bull. Chem. Soc. Jpn. 44, 1148.

    Article  CAS  Google Scholar 

  91. Fujishima, A. and Honda, K. (1972),Nature 238, 37.

    Article  CAS  Google Scholar 

  92. Yamase, T. (1981),Photochem. Photobiol. 34, 111.

    CAS  Google Scholar 

  93. Memming, R. (1988),Top. Curr. Chem. 143, 79.

    Article  CAS  Google Scholar 

  94. Hill, R. and Archer, M. D. (1990),J. Photochem. Photobiol. A: Chemistry 51, 45.

    Article  CAS  Google Scholar 

  95. Tien, H. T. and Chen, J. W. (1989),Photochem. Photobiol. 49, 527.

    Article  CAS  Google Scholar 

  96. Memming, R. (1980),Electrochim. Acta 25, 77.

    Article  CAS  Google Scholar 

  97. Collins J. P. and Sauvage, J. P. (1986),Inorg. Chem. 25, 135.

    Article  Google Scholar 

  98. Rotzinger, F. P., Munavalli, S., Comte, P., Hurst, J. K., Grätzel, M., Pern, F. J., and Frank, A. J. (1987),J. Am. Chem. Soc. 109, 6619.

    Article  CAS  Google Scholar 

  99. Comte, P, Nazeeruddin, M. K., Rotzinger, F. P., Frank, A. J., and Grätzel, M. (1989),J. Mol. Cat. 52, 63.

    Article  CAS  Google Scholar 

  100. Grätzel, M. (1989),Photochemical Energy Conversion, Norris, J. R., and Meisel, D., ed., Elsevier Science, New York, pp. 284–296.

    Google Scholar 

  101. Navío, J. A., Marchena, F. J., Roncel, M, and De la Rosa, M. A. (1991),J. Photochem. Photobiol. A: Chem. 55, 319.

    Article  Google Scholar 

  102. Haussling, L., Mertesdorf, C, and Ringsdorf, H. (1989),Photoconversion Processes for Energy and Chemicals, Hall, D. O., and Grassi, G., ed., Elsevier Applied Science, London, pp. 53–56.

    Google Scholar 

  103. Lehn, J. M. (1988),Angew. Chem. Int. Ed. Engl. 27, 89.

    Article  Google Scholar 

  104. Patterson, L. K. (1989),Photochemical Energy Conversion, Norris, J. R., and Meisel, D., ed., Elsevier Science, New York, pp. 251–254.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De La Rosa, M.A., Navarro, J.A. & Roncel, M. Solar energy conversion from water photolysis by biological and chemical systems. Appl Biochem Biotechnol 30, 61–81 (1991). https://doi.org/10.1007/BF02922024

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02922024

Index Entries

Navigation