Applied Biochemistry and Biotechnology

, Volume 30, Issue 1, pp 29–41 | Cite as

Growth inhibition in animal cell culture

The effect of lactate and ammonia
  • T. Hassell
  • S. Gleave
  • M. Butler


Eight independent cell lines accumulated ammonia in culture to concentrations between 1.3 and 2.9 mM. The growth inhibition of such concentrations of ammonium chloride when added to culture medium was variable. The cell lines tested could be divided into 3 groups depending on their growth response to 2 mM added NH4CI. In the first group (293, HDF, Vero, and PQXB1/2) little (< 14%) or no growth inhibition occurred. In the second group (McCoy and MDCK) a reduction in final cell yield of 50-60% was observed. The third group (HeLa and BHK) was most sensitive to the effects of NH4CI with growth inhibition (>75%) compared to controls. The growth inhibitory effect of added lactate up to 20 mM was negligible (<10%) for 3 cell lines, although one cell line (PQXB1/2) showed greater sensitivity.

The interactive effects of ammonia and lactate were determined in a matrix experiment. At lactate (> 12 mM) and ammonia (1-4 mM), the growth inhibitory effects of the two components were synergistic. However, at low concentrations of lactate (< 12 mM) the toxic effect of ammonia was reduced. A proposed mechanism for the sparing effect of lactate on ammonia toxicity is discussed. This may have importance in developing strategies for the optimal growth of ammoniasensitive cell lines.

Index Entries

Ammonia lactate glutamine growth inhibition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Butler, M., Imamura, T., Thomas, J., and Thilly, W. G. (1983),J. Cell Sci. 61, 351–363.Google Scholar
  2. 2.
    Glacken, M. W., Fleischaker, R. J., and Sinskey, A. J. (1983),Trends Biotech. 1, 102–108.CrossRefGoogle Scholar
  3. 3.
    Butler, M. and Spier, R. E. (1984),J. Biotechnol. 1, 187–196.CrossRefGoogle Scholar
  4. 4.
    Eagle, H., Barban, S., Levy, M., and Schulze, H. O. (1958),J. Biol. Chem. 233, 551–558.Google Scholar
  5. 5.
    Adamson, S. R., Fitzpatrick, S. L., Behie, L. A., Gaucher, G. M., and Lesser, B. H. (1983),Biotech. Lett. 9, 573–578.CrossRefGoogle Scholar
  6. 6.
    Nahapetian, A. T., Thomas, J. N., and Thilly, W. G. (1986),J. Cell Sci. 81, 65–104.Google Scholar
  7. 7.
    Reuveny, S., Velez, D., Miller, L., and Macmillan, J. D. (1986),J. Immunol. Meth. 86, 53–59.CrossRefGoogle Scholar
  8. 8.
    Reitzer, L. J., Wice, B. M., and Kennell, D. (1979),J. Biol. Chem. 254, 2669–2676.Google Scholar
  9. 9.
    Reitzer, L. J., Wice, B. M., and Kennell, D. (1980),J. Biol. Chem. 255, 5616–5625.Google Scholar
  10. 10.
    Zielke, H. R., Ozand, P. T., Tildon, J. T., Sevdalian, D. A., and Cornblath, M. (1978),J. Cell Physiol. 95, 41–48.CrossRefGoogle Scholar
  11. 11.
    Stoker, M. G. P. and MacPherson, J. A. (1964),Nature 203, 1355–1357.CrossRefGoogle Scholar
  12. 12.
    Graham, F. L., Smiley, J., Russell, W. C, and Nairn, R. (1977),J. Gen. Virol. 36, 59–72.CrossRefGoogle Scholar
  13. 13.
    Madin, S. H. and Darby, M. B. (1958),Proc. Soc. Exp. Biol. Med. 98, 574–576.Google Scholar
  14. 14.
    Hsu, T. C, Pomerat, C. M., and Moorhead, P. S. (1957),J. Natl. Cancer Inst. 19, 867–873.Google Scholar
  15. 15.
    Yasumara, Y. and Kawakita, Y. (1963),Nippon Rinsho 21, 1209.Google Scholar
  16. 16.
    Gey, G. O., Coffman, W. D., and Kubicek, M. T. (1952),Cancer Res. 12, 364–365.Google Scholar
  17. 17.
    Wright, A. F., Green, T. P., and Smith, L. L. (1987),Develop. Biol. Stand. 66, 495–502.Google Scholar
  18. 18.
    Patterson, M. K. (1979),Methods in Enzymology 58, 141–152.CrossRefGoogle Scholar
  19. 19.
    Gutmann, I. and Wahlefeld, A. W. 1977,Methods of Enzymatic Analysis, Bergmeyer, H. V. ed., Verlag Chemie Int., pp. 1464-1468.Google Scholar
  20. 20.
    Tritsch, G. L. and Moore, G. E. (1962),Exp. Cell Res. 28, 360–364.CrossRefGoogle Scholar
  21. 21.
    Wein, J. and Goetz, I. E. (1973),In Vitro 9, 186–193.CrossRefGoogle Scholar
  22. 22.
    Zetterberg, A. and Engstrom W. (1981),J. Cell Physiol. 108, 365–373.CrossRefGoogle Scholar
  23. 23.
    Lin, A. and Agrawal, P. (1988),Biotech. Lett. 10, 695–698.CrossRefGoogle Scholar
  24. 24.
    Hassell, T., Allen, I., Rowley, A., and Butler, M. (1987),Modern Approaches to Animal Cell Technology, Spier, R. E. and Griffiths, J. B. eds., Butterworths, London, pp. 245–263.Google Scholar
  25. 25.
    Doyle, C. and Butler, M. (1990),J. Biotechnol. 15, 91–100.CrossRefGoogle Scholar
  26. 26.
    Ryan, W. L. and Cardin, C. (1966),Proc. Soc. Exp. Biol. Med. 123, 27–30.Google Scholar
  27. 27.
    Glacken, M. W., Fleischaker, R. J., and Sinskey, A. J. (1986),Biotech. Bioeng. 28, 1376–1389.CrossRefGoogle Scholar
  28. 28.
    Glacken, M. W., Adema, E., and Sinskey, A. J. (1988),Biotech. Bioeng. 32, 491–506.CrossRefGoogle Scholar
  29. 29.
    Thomas, J. E. and Roberts, R. S. (1989),Process Biochem. 24, 179–182.Google Scholar
  30. 30.
    Butler, M. and Thilly, W. G. (1982),In Vitro 18, 213–219.CrossRefGoogle Scholar
  31. 31.
    Polastri, G. D., Friesen, H. J., and Mauler, R. (1984),Develop. Biol. Stand. 55, 53–56.Google Scholar
  32. 32.
    Lanks, K. W. and Li, P-W. (1988),J. Cell Physiol. 135, 151–155.CrossRefGoogle Scholar
  33. 33.
    Miller, W. M., Wilke, C. R., and Blanch, H. W. (1989),Biotech. Bioeng. 33, 487–499.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1991

Authors and Affiliations

  • T. Hassell
    • 1
  • S. Gleave
    • 1
  • M. Butler
    • 1
  1. 1.Department of Biological SciencesManchester PolytechnicManchesterUK

Personalised recommendations