The Journal of Geometric Analysis

, Volume 9, Issue 3, pp 429–456 | Cite as

Removable singularities ofL p CR-functions on hypersurfaces

  • Burglind Jöricke


Let H be a C2 hypersurface in ℂn, n ≥ 3, and let M be a generic submanifold of H of real codimension one. We describe classes of compact removable singularities K for Lp-solutions of the tangential Cauchy-Riemann equations on H under the conditions K ⊂ M, 1 ≤ p ≤ ∞. Removability is understood here in the classical sense, but new effects occur based on compulsory analytic extension and envelopes of holomorphy. The classical theory gives results only in the case p > 1. But even for p > 1, removable singularities for Lp-solutions of the tangential Cauchy-Riemann equations may be metrically much more massive than the classical theory predicts. The results for p = 1 are close to corresponding results on removability in the sense of analytic extension justifying the name “removability” for the latter subject. No Levi-form condition on H is posed and the description is given intrinsically in terms of the CR-structure of M. This may be interesting in connection with generalizations, for example, to more general CR-manifolds instead of H.

Math Subject Classifications

32A35 32D15 32D20 32A40 32C16 32D10 32F40 

Key Words and Phrases

tangential Cauchy-Riemann operators CR-manifolds CR-orbits minimal CR-invariant sets removable singularities for CR-functions of classLlocp 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ahlfors, L.V. and Beurling, A. Conformal invariants and function-theoretic null sets,Acta Math.,83, 101–129, (1950).CrossRefMathSciNetMATHGoogle Scholar
  2. [2]
    Anderson, J.T. and Cima, J.A. Removable singularities forL p CR-functions,Mich. Math. J.,41, 111–119, (1994).CrossRefMathSciNetMATHGoogle Scholar
  3. [3]
    Baouendi, M.S. and Treves, F. A property of the functions and distributions annihilated by a locally integrable system of complex vector fields,Ann. Math.,113, 387–421, (1981).CrossRefMathSciNetGoogle Scholar
  4. [4]
    Carleson, L. Selected problems on exceptional sets,Van Nostrand Math. Studies, Princeton, NJ, 1967.Google Scholar
  5. [5]
    Čirka, E.M. and Stout, E.L. Removable singularities in the boundary.Contributions to Complex Analysis and Analytic Geometry, Skoda, H. and Trépreau, J.-M., Eds., 43–104.Google Scholar
  6. [6]
    Diederich, K. and Pinčuk, S. The inverse of a CR-homeomorphism is CR,Int. J. Math.,4(3), 379–394, (1993).CrossRefMATHGoogle Scholar
  7. [7]
    Denjoy, A. Sur les fonctions analytiques uniformes à singularités discontinues,C.R. Acad. Sci. Paris,149, 258–260, (1909).Google Scholar
  8. [8]
    Harvey, R. and Polking, J. Removable singularities of solutions of linear partial differential equations,Acta Math.,125, 39–56, (1970).CrossRefMathSciNetMATHGoogle Scholar
  9. [9]
    Jöricke, B. Removable singularities of CR-functions,Ark. för Mat.,26, 117–143, (1988).CrossRefMATHGoogle Scholar
  10. [10]
    Jöricke, B. Envelopes of holomorphy and CR-invariant subsets of CR-manifolds,C.R. Acad. Sc. Paris,315, Sér. I, 407–411, (1992).MATHGoogle Scholar
  11. [11]
    Jöricke, B. Some remarks concerning holomorphically convex hulls and envelopes of holomorphy,Math. Z.,218, 143–157, (1995).CrossRefMathSciNetMATHGoogle Scholar
  12. [12]
    Jöricke, B. Deformation of CR-manifolds, minimal points and CR-manifolds with the microlocal analytic extension property. To appear inJ. Geom. Anal. Google Scholar
  13. [13]
    Jöricke, B. Boundaries of singularity sets, removable singularities, and CR-invariant subsets of CR-manifolds. To appear inJ. Geom. Anal. Google Scholar
  14. [14]
    Koosis, P. Introduction to Hp-spaces,London Math. Soc., Led. Notes Ser., 40, Cambridge University Press, (1980).Google Scholar
  15. [15]
    Kytmanov, A.M. and Rea, C. Elimination of L1 singularities on Hölder peak sets for CR-functions,Ann. Scuola Norm. Sup. Pisa, Classe di Scienze,22, 177–226, (1995).MathSciNetGoogle Scholar
  16. [16]
    Lupacciolu, G. A theorem on holomorphic extension of CR-functions,Pacific J. Math.,124, 177–191, (1986).MathSciNetMATHGoogle Scholar
  17. [17]
    Marshall, D. Removable sets for bounded analytic functions,Lecture Notes in Math.,1043, 485–490, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, (1984).Google Scholar
  18. [18]
    Mazya, V.G. and Havin, V.P. The nonlinear analogue of the Newton potential and metric properties of (p, l)-capacity (Russian),Dokl. Akad. Nauk SSSR,194(4), 770–773, (1970).MathSciNetGoogle Scholar
  19. [19]
    Merker, J. On removable singularities in higher codimension,Int. Math. Res. Not.,1, 21–56, (1997).CrossRefMathSciNetGoogle Scholar
  20. [20]
    Merker, J. and Porten, E. On removable singularities for integrable CR-functions. Preprint LMNS-97-19.Google Scholar
  21. [21]
    Porten, E. Thesis. Berlin, 1996.Google Scholar
  22. [22]
    Privalov, I.I.Randeigenschaften Analytischer Funktionen. Translated from Russian. Deutscher Verl. d. Wiss., Berlin, 1956.MATHGoogle Scholar
  23. [23]
    Saks, S. Theory of the integral. Warsaw, 1937.Google Scholar
  24. [24]
    Stein, E.M. Boundary behaviour of holomorphic functions of several complex variables,Math. Notes, Princeton University Press and University of Tokyo Press, Princeton, NJ, 1972.Google Scholar
  25. [25]
    Stein, E.M.Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton, NJ, 1970.MATHGoogle Scholar
  26. [26]
    Stout, E.L. Removable singularities for the boundary values of holomorphic functions of several complex variables.Proc. Mittag-Leffler Special Year in Complex Variables. Princeton University Press, Princeton, NJ, 1993.Google Scholar
  27. [27]
    Stout, E.L. Harmonic duality, hyperfunctions and removable singularities,Izvestiya Rus. Acad. Sci., Ser. Math.,59(6), 133–170, (1995).MathSciNetGoogle Scholar
  28. [28]
    Sussmann, H.J. Orbits of families of vector fields and integrability of distributions,Trans. Am. Math. Soc.,180, 171–188, (1973).CrossRefMathSciNetMATHGoogle Scholar
  29. [29]
    Trépreau, J.-M. Sur la propagation des singularités dans les variétiés CR,Bull. Soc. Math. France,118, 403–450, (1990).MathSciNetMATHGoogle Scholar
  30. [30]
    Trépreau, J.-M. Holomorphic Extension of CR-Functions: A Survey. Progress in Non-Linear Differential Equations and Their Applications,The Danish-Swedish Analysis Seminar 1995, Birkhäuser, Boston, 1996.Google Scholar
  31. [31]
    Tumanov, A.E. Extension of CR-functions into a wedge from a manifold of finite type,Mat. Sbornik,136, 129–140, (1988).Google Scholar
  32. [32]
    Tumanov, E.A. Extension of CR-functions into a wedge,Mat. Sbornik,181, 951–964, (1990).MATHGoogle Scholar
  33. [33]
    Vinogradov, S.A. and Havin, V.P. Free interpolation inH and in some other function spaces,Zapiski Naučn. Semin. LOMI,47, 15–54, (1974).MathSciNetMATHGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 1999

Authors and Affiliations

  1. 1.Mathematical DepartmentUppsala UniversityUppsalaSweden

Personalised recommendations