The Journal of Geometric Analysis

, Volume 9, Issue 2, pp 179–201 | Cite as

Area-minimizing Riemann surfaces on the Iwasawa manifold

  • Giovanni Bassanelli


The Iwasawa manifold is a compact, complex threefold which is not Kähler; but, endowed with the natural hermitian metric, it is balanced. Thus, complex hypersurfaces are homologically area-minimizing, though this does not hold for complex curves. Some interesting pathologies in fact happen.

Math Subject Classifications

49Q05 53C56 32C30 49Q15 

Key Words and Phrases

homologically area-minimizing surfaces Kähler and balanced manifolds 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Alessandrini, L. and Bassanelli, G. Compactp-Kähler manifolds,Geometriae Dedicata,38, 199–210, (1991).CrossRefMathSciNetMATHGoogle Scholar
  2. [2]
    Alessandrini, L. and Bassanelli, G. Metric Properties of manifolds bimeromorphic to compact Kähler spaces,J. Differential Geometry,37, 95–121, (1993).MathSciNetMATHGoogle Scholar
  3. [3]
    Alexander, H. Holomorphic chains and the support hypothesis conjecture,J. Am. Math. Soc.,10, 123–138, (1997).CrossRefMATHGoogle Scholar
  4. [4]
    Bott, R. and Tu, L.W.Differential Forms in Algebraic Topology, Springer-Verlag, Berlin, 1982.MATHGoogle Scholar
  5. [5]
    Federer, H.Geometric Measure Theory, Springer-Verlag, New York, 1969.MATHGoogle Scholar
  6. [6]
    Griffiths, P. and Harris, J.Principles of Algebraic Geometry, John Wiley & Sons, New York, 1978.MATHGoogle Scholar
  7. [7]
    Harvey, R. and Knapp, A.W. Positive (p, p)-forms, Wirtinger’s inequality and currents, Proceedings Tulane University Program on Value Distribution Theory in Complex Analysis and Related Topics in Differential Geometry 1972–73, Dekker, New York, 43–62, 1974.Google Scholar
  8. [8]
    Höfer, T. Remarks on torus principal bundles,J. Math. Kyoto Univ.,33(1), 227–259, (1993).MathSciNetMATHGoogle Scholar
  9. [9]
    King, J.R. The currents defined by analytic varieties,Acta Math.,127, 185–220, (1971).CrossRefMathSciNetMATHGoogle Scholar
  10. [10]
    Lawson, H.B. The stable homology of a flat torus,Math. Scand.,36, 49–73, (1975).MathSciNetMATHGoogle Scholar
  11. [11]
    Michelson, M.L. On the existence of special metrics in complex geometry,Acta Math.,143, 261–295, (1983).Google Scholar

Copyright information

© Mathematica Josephina, Inc. 1999

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità degli Studi di ParmaParmaItaly

Personalised recommendations