Skip to main content
Log in

Kinetics of ethanol production from carob pods extract by immobilizedSaccharomyces cerevisiae cells

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Kinetics of ethanol production from carob pods extract by immobilizedS. cerevisiae cells in static and shake flask fermentation have been investigated. Shake flask fermentation proved to be a better fermentation system for the production of ethanol than static fermentation. The optimum values of ethanol concentration, ethanol productivity, ethanol yield, and fermentation efficiency were obtained at pH range 3.5–6.5 and temperature between 30–35°C. A maximum ethanol concentration (65 g/L), ethanol productivity (8.3 g/Lh), ethanol yield (0.44 g/g), and fermentation efficiency (95%) was achieved at an initial sugar concentration of 200, 150, 100, and 200 g/L, respectively. The highest values of specific ethanol production rate and specific sugar uptake rate were obtained at pH 6.5, temperature 40°C, and initial sugar concentration of 100 g/L. Other kinetic parameters, biomass concentration, biomass yield, and specific biomass production rate were maximum at pH 5.5, temperature 30°C, and initial sugar concentration 150 g/L. Under the same fermentation conditions non-sterilized carob pod extract gave higher ethanol concentration than sterilized medium. In repeated batch fermentations, the immobilizedS. cerevisiae cells in Ca-alginate beads retained their ability to produce ethanol for 5 d.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mulet, A., Berna, A., Heredero, V., and Rossello, C. (1988),Lebensm.-Wiss. u.-Technol. 21, 108.

    CAS  Google Scholar 

  2. Statistical Yearbook of Greece (1988), National Statistical Service of Greece, Athens.

  3. Davies, W. N. L., Orphanos, P. I., and Papaconstantinou, J. (1971),J. Sri. Food Agric. 22, 83.

    Article  CAS  Google Scholar 

  4. Binder, R. J., Coit, J. E., Williams, K. T., and Brekke, J. E. (1959),Food Technol, March, 213.

  5. Calixto, F. S. and Canellas, J. (1982),J. Sri. Food Agric. 33, 1319.

    Article  CAS  Google Scholar 

  6. Canellas, J., Pou, J., and Mulet, A. (1989),Lebensm.-Wiss. u.-Technol. 22, 73.

    CAS  Google Scholar 

  7. Kolios, G., Lekka, M., Typas, M., and Drainas, C. (1989),J. Ferment. Bioeng.,67(5), 363.

    Article  CAS  Google Scholar 

  8. Mehaia, M. A. and Cheryan, M. (1991),Enzyme Microb. Technol. 13, 257.

    Article  CAS  Google Scholar 

  9. Kana, K., Kanellaki, M., Psarianos, C., and Koutinas, A. (1989),J. Ferment. Bioeng. 68(2), 144.

    Article  CAS  Google Scholar 

  10. Kana, K., Kanellaki, M., Papadimitriou, A., Psarianos, C., and Koutinas, A. (1989),J. Ferment. Bioeng. 68(3), 213.

    Article  CAS  Google Scholar 

  11. Rhee, S. K., Lee, G. M., Han, Y. T., Yosof, Z. A., Han, M. H., and Lee, K. J. (1984),Biotechnol. Lett. 6(9), 615.

    Article  CAS  Google Scholar 

  12. Kim, K. and Hamdy, M. K. (1985),Biotechnol. Bioeng. 27, 316.

    Article  CAS  Google Scholar 

  13. Doelle, H. W., Kennedy, L. D., and Doelle, M. B. (1991),Biotechnol. Lett. 13(2), 131.

    Article  CAS  Google Scholar 

  14. Rosa, M. F., Vieira, A. M., and Bartolomeu, M. L. (1986),Enzyme Microb. Technol. 8, 673.

    Article  CAS  Google Scholar 

  15. Rosa, M. F., Correia, I. S., and Novais, J. M. (1987),Biotechnol. Lett. 9(6), 441.

    Article  CAS  Google Scholar 

  16. Bajpai, P. and Margaritis, A. (1987),Biotechnol. Bioeng. 30, 306.

    Article  CAS  Google Scholar 

  17. Bajpai, P. and Margaritis, A. (1987),Appl. Microbiol. Biotechnol. 26, 447.

    Article  CAS  Google Scholar 

  18. Kim, C. H. and Rhee, S. K. (1990),Appl. Biochem. Biotechnol. 23, 171.

    Article  CAS  Google Scholar 

  19. Office National de Statistique de Grece. Commerce exterieur de La Grece (1990), Athens.

  20. Miller, G. L. (1959),Anal. Chem. 31(3), 426.

    Article  CAS  Google Scholar 

  21. Roukas, T. and Lazarides, H. N. (1991),J. Ind. Microb. 7, 15.

    Article  CAS  Google Scholar 

  22. D’Amore, T., Celotto, G., Russell, I. and Stewart, G. G. (1989),Enzyme Microb. Technol. 11, 411.

    Article  CAS  Google Scholar 

  23. Kamini, N. R. and Gunasekaran, P. (1989),J. Ferment. Bioeng. 68 (5), 305.

    Article  CAS  Google Scholar 

  24. Bajpai, P., Sharma, A., Raghuram, N., and Bajpai, P. K. (1988),Biotechnol. Lett. 10(3), 217.

    Article  CAS  Google Scholar 

  25. Roukas, T., Lazarides, H. N., and Kotzekidou, P. (1991),Milchwissenschaft 46(7), 438.

    CAS  Google Scholar 

  26. Rychtera, M., Basarova, G., and Ivanova, V. (1987), in4th European Congress on Biotechnology, vol. 2, Neijssel, O. M., Van der Meer, R. R. and Luvben, K., eds., Elsevier, Amsterdam, pp. 107–109.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roukas, T. Kinetics of ethanol production from carob pods extract by immobilizedSaccharomyces cerevisiae cells. Appl Biochem Biotechnol 44, 49–64 (1994). https://doi.org/10.1007/BF02921851

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02921851

Index Entries

Navigation