Skip to main content
Log in

Patents and literature

Enzyme activity in supercritical fluids

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The objective of the Patents and Literature Section ofApplied Biochemistry and Biotechnology is to summarize and cite recent developments in industrial and academic research as portrayed within the scope of recent patents and literature and to highlight emerging biotechnological research areas. To add to the value of this section of the journal, mini-reviews on a topic in biotechnology will be included. Following each mini-review, a patent and literature search will be presented, much as before. The reviews will be authored by experts in the topic, who will also prepare the patent and literature searches. The manuscripts will be peer-reviewed. Reviews will be solicited by the Patents and Literature editor, but unsolicited submissions are also encouraged. However, please contact the Patents and Literature Editor regarding a topic of interest before commencing with the preparation of such a review.

For information and/or suggestions for future topics, contact Jonathan S. Dordick, Editor, Patents and Literature, Department of Chemical and Biochemical Engineering, University of Iowa, 129 CB, Iowa City, Iowa 52242.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  1. Aaltonen, O. and Rantakyla, M. (1991) Biocatalysis in supercritical carbon dioxide.Chemtech, 21. 240–248.

    CAS  Google Scholar 

  2. Aaltonen, O. and Rantakyla, M. (1991) Lipase catalyzed reactions of chiral esters in supercritical carbon dioxide.Proc. 2nd Int. Symp., Supercrit, Fl.; Boston, May 19–22.

  3. Ajinimoto (1987) Enzymes work in supercritical fluids.Bioprocess. Technol., 9, 1.

    Google Scholar 

  4. Ajinimoto (1989) Supercritical flow bioreactor.Bioprocess. Technol., 11, 2.

    Google Scholar 

  5. Chi, Y.M., Nakamura, K. and Yano, T. (1988) Enzymatic interesteriflcation in supercritical carbon dioxide.Agric. Biol. Chem., 52, 1541–1550.

    CAS  Google Scholar 

  6. Dumont, T., Barth, D. and Perrut, M. (1991) Continuous synthesis of ethylmyristate by enzymatic reaction in supercritical carbon dioxide.Proc. 2nd Int. Symp., Supercrit. FL: Boston. May 19–22.

  7. Erickson, J.C. (1988) Control of enzyme selectivity using a supercritical fluid.Ph.D. Thesis, Massachusetts Institute of Technology.

  8. Erickson, J.C.. Schyns, P. and Cooney, C.L. (1990) Effect of pressure on an enzymatic reaction in a supercritical fluid.Amer. Inst. Chem. Eng. J., 36, 299–301.

    CAS  Google Scholar 

  9. Hammond, D.A., Karel, M., Klibanov, A.M. & Krukonis, V.J. (1985) Enzymic reactions in supercritical gases.Appl. Biochem Biotechnol., 11, 393–400.

    Article  CAS  Google Scholar 

  10. Kamat, S., Barrera, J., Beckman, E.J. and Russell, A.J. (1991) Biocatalytic synthesis of acrylates in organic solvents and supercritical fluids.in press.

  11. Kamat, S., Beckman, E.J. and Russell, A.J. (1991) Role of diffusion in non-aqueous enzymology: 1 Theory.in press.

  12. Kamat, S., Jacob, J., Beckman, E.J. & Russell, A.J. (1991) Biocatalytic synthesis of acrylates in supercritical fluids.Enz. Microb. Technol., 13, 519.

    Article  Google Scholar 

  13. Kamihara, M., Taniguchi, M. and Kobayasi, T. (1987) Synthesis of aspartame precursors by enzymic reaction in supercritical carbon dioxide.Agric. Biol. Chem., 51, 3427–3428.

    Google Scholar 

  14. Kasche, V. Schlothauer, R. & Brunner, G. (1988) Enzyme denaturation in supercritical carbon dioxide: stabilizing effect of disulfide bonds during the depressurization step.Biotechnol. Lett., 10 569–574.

    Article  CAS  Google Scholar 

  15. Klibanov, A.M. (1986) Enzymes work in organic solvents.Chemtech.16, 354–359.

    CAS  Google Scholar 

  16. Komolprasert, V. and Ofoli, R.Y. (1991) A dispersion model for predicting the extent of starch liquefaction byBacillus licheniformis α-amylase during reactive extrusion.Biotechnol. Bioengin., 37. 681–690.

    Article  CAS  Google Scholar 

  17. Krukonis, V.J. (1988) Processing with supercritical fluids: overview and applications.ACS Symp. Ser, 366, 26–43.

    Article  Google Scholar 

  18. Krukonis, V.J. and Hammond, D.A. (1988) On the solubility of disodium p-nitrophenyl phosphate in supercritical carbon dioxide.Biotechnol. Lett., 10, 837–841.

    Article  CAS  Google Scholar 

  19. Marty, A., Chulalaksananukul, W., Condoret, J.S., Willemot, R.M. and Durand, G. (1990) Comparison of lipase catalyzed esterification in supercritical carbon dioxide and in n-hexane.Biotechnol, Lett., 12, 11–16.

    Article  CAS  Google Scholar 

  20. Miller, D.A., Blanch, H.W. and Prausnitz, J.M. (1991) Enzyme-catalyzed interesterification of triglycerides in supercritical carbon-dioxide.Indust. Engin. Chem. Res., 30, 939–946.

    Article  CAS  Google Scholar 

  21. Nakamura, K. (1989) Supercritical fluid bioreactor. InBioprod, Bioprocesses, Conf. Proc., Fiechter, A. (Ed), Springer, Berlin. pp257–265.

    Google Scholar 

  22. Nakamura, K. (1990) Biochemical reactions in supercritical fluids (Erratum to Nakamura, K. (1990)Trends Biotechnol.,8, 288–292).Trends Biotechnol., 8, 353.

    Article  CAS  Google Scholar 

  23. Nakamura, K. (1990) Biochemical reactions in supercritical fluids.Trends Biotechnol., 8, 288–292.

    Article  CAS  Google Scholar 

  24. Nakamura, K., Chi, Y.M., Yamada, Y. and Yano, T. (1986) Lipase activity and stability in supercritical carbon dioxide.Chem. Eng. Comrnun., 45, 207–212.

    Article  CAS  Google Scholar 

  25. Nakamura, K.. Chi, Y.M., and Yano, T. (1988) Enzymatic reactions in supercritical carbon dioxide.Proc. Intl. Symp. Supercrit. Fl.; Nice, Oct 17–19; p. 925–932.

  26. Nakamura, K., Fujii, H., Chi, Y.M. and Yano, T. (1990) Supercritical fluid - a novel nonaqueous medium to integrate enzymatic reaction and separation.Annals New York Acad. Sci., 613, 319–332.

    Article  CAS  Google Scholar 

  27. Nakamura, K., Hoshino, T. and Ariyama, H. (1991) Adsorption of supercritical carbon dioxide on biological materials.Proc. 2nd Int. Symp., Supercrit. Fl.; Boston, May 19–22.

  28. Pasta, P., Mazzola, G., Carrea, G. and Riva, S. (1989) Subtilisincatalyzed transesterification in supercritical carbon-dioxide.Biotechnol. Lett. 11, 643–648.

    Article  CAS  Google Scholar 

  29. Randolph, T.W. (1987) Enzymic catalysis in supercritical fluids.Diss. Abstr. Int. B 1988, 49, 1836.

    Google Scholar 

  30. Randolph, T.W., Blanch, H.W. and Clark, D.S. (1991) Biocatalysis in supercritical fluids. InBiocatalysis in Industry, ed. Dordick, J.. Plenum press, New York, pp. 219–237.

    Google Scholar 

  31. Randolph, T.W., Blanch, H.W. and Prausnitz, J.M. (1988)Amer. Inst. Chem. Eng. J., 34, 1354–1360.

    CAS  Google Scholar 

  32. Randolph, T.W., Blanch, H.W., Prausnitz, J.M. and Wilke, C.R. (1985) Enzymic catalysis in a supercritical fluid.Biotechnol. Lett., 7, 325–328.

    Article  CAS  Google Scholar 

  33. Randolph, T.W., Clark, D.S., Blanch, H.W. and Prausnitz, J.M. (1988) Cholesterol aggregation and interaction with cholesterol oxidase in supercritical carbon dioxide.Proc. Natl. Acad. Sci. 85, 2979–2983.

    Article  CAS  Google Scholar 

  34. Randolph, T.W., Clark, D.S., Blanch, H.W. and Prausnitz, J.M. (1988) Enzymatic oxidation of cholesterol aggregates in supercritical carbon dioxide.Science, 239, 387–390.

    Article  CAS  Google Scholar 

  35. Randolph, T.W., Skerker, P.S., Blanch, H.W., Prausnitz, J.M. and Clark, D.S. (1987) Effect of enzyme and substrate conformation of enzymic activity in a supercritical fluid: kinetic and ESR studies.Abstr. Pap. Amer. Chem. Soc.,194.

  36. Russell, A.J and Beckman, E.J. (1991) Should the high diffusivity of a supercritical fluid increase the rate of an enzyme catalyzed reaction?Enz. Microb. Technol., in press.

  37. Schneider, L.V. (1991) A three-dimensional parameter approach to nonaqueous enzymology.Biotechnol. Bioengin., 37, 627–638.

    Article  CAS  Google Scholar 

  38. Skala, D.U. (1989) Reactions in supercritical fluids.Hem. Ind., 43. 423–436.

    CAS  Google Scholar 

  39. Steytler, D.C., Moulson, P.S. and Reynolds, J. (1991) Biotransformations in near-critical carbon dioxide.Enz. Microb. Technol., 13, 221–226.

    Article  CAS  Google Scholar 

  40. Taniguchi, M., Kamihara, M. and Kobayashi, T. (1987) Effect of treatment with supercritical carbon dioxide on enzymic activity.Agric. Biol. Chem., 51, 593–594.

    CAS  Google Scholar 

  41. van Eijs, A.A.M. and de Jong, J.P.J. (1989) Enzymic production of fine chemicals and product fractionation.PT-Procestech. 44, 50–55.

    Google Scholar 

  42. van Eijs, A.A.M., de Jong, J.P.J., Doddema, H.J. and Lindeboom, D.R. (1988) Enzymatic transesterification in supercritical carbon dioxide.Proc. Intl. Symp. Supercrit. Ft.: Nice, Oct 17–19: p. 933–942.

  43. Weder, J.K.P. (1980) Effect of supercritical carbon dioxide on proteins.Z. Lebensm. Unters. Forsch., 171, 95–100.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russell, A.J., Beckman, E.J. Patents and literature. Appl Biochem Biotechnol 31, 197–211 (1991). https://doi.org/10.1007/BF02921789

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02921789

Key Words

Navigation