Applied Biochemistry and Biotechnology

, Volume 36, Issue 3, pp 153–161 | Cite as

New alcohol resistant strains ofSaccharomyces cerevisiae species for potable alcohol production using molasse

  • T. Argiriou
  • A. Kalliafas
  • C. Psarianos
  • K. Kana
  • M. Kanellaki
  • A. A. Koutinas


Two alcohol resistant strains ofSaccharomyces cerevisiae species were isolated from a Greek vineyard plantation. The strain AXAZ-1 gave a concentration of 17.6% v/v alcohol and AXAZ-2 16.5%, when musts from raisin and sultana grapes, respectively, were employed in alcoholic fermentations. They were found to be more alcohol tolerant and fermentative in the fermentation of molasse than the traditional baker’s yeast. Specifically, using an initial {fx153-1}Be density of 16{fx153-2}Be at the repeated batch fermentation process, in the first as well as fourth batch, the better AXAZ-1 gave final {fx153-3}Be densities of 6.0 and 10.5 respectively, and the baker’s yeast 11.6 and 14.5.

Index Entries

Alcohol molasse Saccharomyces cerevisiae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Uma, V. and Polasa, H. (1983),J. Microb. Biotechnol. 3(2), 70.Google Scholar
  2. 2.
    Rogers, P. L., Lee, K. L., Scotnicki, M. L., and Tride, D. E. (1982),Adv. Biochem. Eng. 23, 37.Google Scholar
  3. 3.
    Converti, A., Perego, P., Lodi, A., Parisi, F., and DelBorghi, M. (1985),Biotechnol. Bioeng. 27(8), 1108.CrossRefGoogle Scholar
  4. 4.
    Martinez, E., Guitierez, L., Chamizo, A., Alonso, A., Echevaria, R., Rodriguez, D., and Gonalez, L. (1987)),Sobre Deriv. Cana Azucar,21(2), 1.Google Scholar
  5. 5.
    Grote, W., Lee, K., Rogers, P. (1980),Biotechnol. Lett. 2, 481.CrossRefGoogle Scholar
  6. 6.
    Margaritis, A., Bajpai, P., and Wallace, J. (1981),Biotechnol. Lett. 3, 613.CrossRefGoogle Scholar
  7. 7.
    Arcuri, E. J. (1982),Biotechnol. Bioeng. 24, 595.CrossRefGoogle Scholar
  8. 8.
    Bland, R. R., Chen, H. C., Jewel, W. T., Belamy, W. D., and Zahl, R. K. (1982),Biotechnol. Lett. 4(5), 323.CrossRefGoogle Scholar
  9. 9.
    Margaritis, A. and Rowe, C. E. (1983),Dev. Ind. Microbiol. 24, 329.Google Scholar
  10. 10.
    Krug, T. A. and Daugulis, A. S. (1983),Biotechnol. Lett. 5, 159.CrossRefGoogle Scholar
  11. 11.
    Klein, J. and Kressdorf, B. (1983),Biotechnol. Lett. 5(8), 497.CrossRefGoogle Scholar
  12. 12.
    Jain, W. K., Toran Diaz, I., and Barattit, J. (1985),Biotechnol. Bioeng. 27, 613.CrossRefGoogle Scholar
  13. 13.
    Bajpai, P. K. and Margaritis, A. (1986),Biotechnol. Bioeng. 28, 824.CrossRefGoogle Scholar
  14. 14.
    Koutinas, A. A., Kanellaki, M., Lycourghiotis, A., Typas, M. A., and Drainas, C. (1988),J. Appl. Microbiol. Biotechnol. 28, 235.Google Scholar
  15. 15.
    Koutinas, A. A. and Kanellaki, M. (1990),J. Food Sci. 55(2), 525.CrossRefGoogle Scholar
  16. 16.
    Scott, T. A. and Melvin, E. H. (1953),Anal. Chem. 25, 1651.Google Scholar
  17. 17.
    Koutinas, A. A., Kanellaki, M., Typas, M. A., and Drainas, C. (1986),Biotechnol. Lett. 8(7), 517.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1992

Authors and Affiliations

  • T. Argiriou
    • 1
  • A. Kalliafas
    • 2
  • C. Psarianos
    • 1
  • K. Kana
    • 1
  • M. Kanellaki
    • 1
  • A. A. Koutinas
    • 1
  1. 1.Department of Chemistry, Section of Analytical, Environmental and Applied ChemistryUniversity of PatrasPatrasGreece
  2. 2.Department of Biology, Laboratory of BiologyUniversity of PatrasPatrasGreece

Personalised recommendations