Applied Biochemistry and Biotechnology

, Volume 22, Issue 3, pp 279–288 | Cite as

Dynamic modeling of an immobilized cell reactor

Application to aerobic reactions
  • Kiyohiko Nakasaki
  • Takeji Murai
  • Tetsgo Akiyama


A mathematical model has been developed to describe the dynamic aerobic reaction occurring in a semibatch type of mixed flow reactor, containing cells immobilized in gel beads. This modeling is an extension of that developed in our previous study, for an immobilized cell reactor involving ethanol fermentation. In contrast to anaerobic reactions such as ethanol fermentation, (wherein the influent substrate concentration can be set at any desired level), aeration becomes necessary to provide additional substrate (oxygen) for most aerobic reactions occurring in immobilized cell reactors. Tobacco cell cultivation was chosen as a representative aerobic reaction, and the effect of aeration was assessed in terms of the volumetric coefficient of oxygen from gas to liquid phases.

Index Entries

Immobilized cell reactor mathematical modeling, immobilized cell reactor dynamic aerobic reaction immobilized cell reactor effect of aeration, immobilized cell reactor containing cells in gel beads, immobilization of growing cell tobacco cell, immobilization of growing cell cell concentration change 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wada, M, Kato, J, and Chibata, I. (1981),Eur. J. Appl. Microbiol. Biotechnol. 11, 67.CrossRefGoogle Scholar
  2. 2.
    Mori, A. (1985),Process Biochem. 20, 67.Google Scholar
  3. 3.
    Nakajima, H., Sonomoto, K, Usui, N., Sato, F., Yamada, Y., Tanaka, A. and Fukui, S. (1985),J. Biotechnol.,2, 107.CrossRefGoogle Scholar
  4. 4.
    Shirai, Y., Hashimoto, K., Yamaji, H., and Tokashiki, M. (1987),Appl. Microb. Biotech.,26, 495.CrossRefGoogle Scholar
  5. 5.
    Tharakan, J.P. and Chau, P.C. (1987),Biotechnol. Bioeng.,29, 657.CrossRefGoogle Scholar
  6. 6.
    Adlercreutz, P. (1986),Biotechnol. Bioeng.,28, 223.CrossRefGoogle Scholar
  7. 7.
    Shieh, W.K., Mulcahy, L.T., and LaMotta, E.J. (1982),Enzyme Microb. Technol. 4, 269.CrossRefGoogle Scholar
  8. 8.
    Worden, R. M. and Donaldson, T. L. (1986),Biotechnol. Bioeng. Symp. No. 17, 663.Google Scholar
  9. 9.
    Nakasaki, K., Murai, T., and Akiyama, T. (1989),Biotechnol. Bioeng. 33, 1317.CrossRefGoogle Scholar
  10. 10.
    Hallsby, G. A. and Shuler, M. L. (1986),Biotech. Bioeng. Symp. No. 17, 741.Google Scholar
  11. 11.
    Yamaguchi, H. (1987),Shokubutsu Biotechnology Nyumon. Ohm Press, pp. 111‐141.Google Scholar
  12. 12.
    Azechi, S. (1982),Saibou kogaku 1, 261.Google Scholar
  13. 13.
    Sasaki, Y. (1985), M.S. thesis,Tokyo Institute of Technology. Google Scholar
  14. 14.
    Furusaki, S. and Seki, M. (1985),J. Chem. Eng. Japan 18, 389.CrossRefGoogle Scholar
  15. 15.
    Taguchi, H. (1988),Biseibutsu Baiyo Kogaku, Taguchi, H. and Nagai, S., eds., Kyoritsu Press, pp. 154‐199.Google Scholar

Copyright information

© Humana Press Inc. 1989

Authors and Affiliations

  • Kiyohiko Nakasaki
    • 1
  • Takeji Murai
    • 1
  • Tetsgo Akiyama
    • 1
  1. 1.Department of Chemical EngineeringShizuoka UniversityHamamatsuJapan

Personalised recommendations